Détail de l'auteur
Auteur Amid Darabi |
Documents disponibles écrits par cet auteur (1)
Ajouter le résultat dans votre panier Affiner la recherche Interroger des sources externes
Development of a novel hybrid multi-boosting neural network model for spatial prediction of urban flood / Amid Darabi in Geocarto international, vol 37 n° 19 ([15/09/2022])
[article]
Titre : Development of a novel hybrid multi-boosting neural network model for spatial prediction of urban flood Type de document : Article/Communication Auteurs : Amid Darabi, Auteur ; Omid Rahmati, Auteur ; Seyed Amir Naghibi, Auteur ; et al., Auteur Année de publication : 2022 Article en page(s) : pp 5716 - 5741 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Cartographie thématique
[Termes IGN] aléa
[Termes IGN] apprentissage automatique
[Termes IGN] cartographie des risques
[Termes IGN] classification et arbre de régression
[Termes IGN] classification par forêts d'arbres décisionnels
[Termes IGN] classification par Perceptron multicouche
[Termes IGN] écoulement des eaux
[Termes IGN] inondation
[Termes IGN] Iran
[Termes IGN] simulation spatiale
[Termes IGN] zone urbaineRésumé : (auteur) In this study, a new hybridized machine learning algorithm for urban flood susceptibility mapping, named MultiB-MLPNN, was developed using a multi-boosting technique and MLPNN. The model was tested in Amol City, Iran, a data-scarce city in an ungauged area which is prone to severe flood inundation events and currently lacks flood prevention infrastructure. Performance of the hybridized model was compared with that of a standalone MLPNN model, random forest and boosted regression trees. Area under the curve, efficiency, true skill statistic, Matthews correlation coefficient, misclassification rate, sensitivity and specificity were used to evaluate model performance. In validation, the MultiB-MLPNN model showed the best predictive performance. The hybridized MultiB-MLPNN model is thus useful for generating realistic flood susceptibility maps for data-scarce urban areas. The maps can be used to develop risk-reduction measures to protect urban areas from devastating floods, particularly where available data are insufficient to support physically based hydrological or hydraulic models. Numéro de notice : A2022-708 Affiliation des auteurs : non IGN Thématique : GEOMATIQUE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.1080/10106049.2021.1920629 Date de publication en ligne : 13/05/2021 En ligne : https://doi.org/10.1080/10106049.2021.1920629 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=101578
in Geocarto international > vol 37 n° 19 [15/09/2022] . - pp 5716 - 5741[article]