Détail de l'auteur
Auteur Khalid Ibno Namra |
Documents disponibles écrits par cet auteur (1)
Ajouter le résultat dans votre panier Affiner la recherche Interroger des sources externes
Evaluation of Landsat 8 image pansharpening in estimating soil organic matter using multiple linear regression and artificial neural networks / Abdelkrim Bouasria in Geo-spatial Information Science, vol 25 n° 3 (October 2022)
[article]
Titre : Evaluation of Landsat 8 image pansharpening in estimating soil organic matter using multiple linear regression and artificial neural networks Type de document : Article/Communication Auteurs : Abdelkrim Bouasria, Auteur ; Khalid Ibno Namra, Auteur ; Abdelmejid Rahimi, Auteur ; et al., Auteur Année de publication : 2022 Article en page(s) : pp 353 - 364 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Traitement d'image optique
[Termes IGN] état du sol
[Termes IGN] image Landsat-OLI
[Termes IGN] image panchromatique
[Termes IGN] Maroc
[Termes IGN] matière organique
[Termes IGN] modèle de simulation
[Termes IGN] pansharpening (fusion d'images)
[Termes IGN] Perceptron multicouche
[Termes IGN] régression multiple
[Termes IGN] réseau neuronal artificielRésumé : (auteur) In agricultural systems, the regular monitoring of Soil Organic Matter (SOM) dynamics is essential. This task is costly and time-consuming when using the conventional method, especially in a very fragmented area and with intensive agricultural activity, such as the area of Sidi Bennour. The study area is located in the Doukkala irrigated perimeter in Morocco. Satellite data can provide an alternative and fill this gap at a low cost. Models to predict SOM from a satellite image, whether linear or nonlinear, have shown considerable interest. This study aims to compare SOM prediction using Multiple Linear Regression (MLR) and Artificial Neural Networks (ANN). A total of 368 points were collected at a depth of 0–30 cm and analyzed in the laboratory. An image at 15 m resolution (MSPAN) was produced from a 30 m resolution (MS) Landsat-8 image using image pansharpening processing and panchromatic band (15 m). The results obtained show that the MLR models predicted the SOM with (training/validation) R2 values of 0.62/0.63 and 0.64/0.65 and RMSE values of 0.23/0.22 and 0.22/0.21 for the MS and MSPAN images, respectively. In contrast, the ANN models predicted SOM with R2 values of 0.65/0.66 and 0.69/0.71 and RMSE values of 0.22/0.10 and 0.21/0.18 for the MS and MSPAN images, respectively. Image pansharpening improved the prediction accuracy by 2.60% and 4.30% and reduced the estimation error by 0.80% and 1.30% for the MLR and ANN models, respectively. Numéro de notice : A2022-722 Affiliation des auteurs : non IGN Thématique : IMAGERIE Nature : Article DOI : 10.1080/10095020.2022.2026743 Date de publication en ligne : 15/02/2022 En ligne : https://doi.org/10.1080/10095020.2022.2026743 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=101665
in Geo-spatial Information Science > vol 25 n° 3 (October 2022) . - pp 353 - 364[article]