Détail de l'auteur
Auteur Jing Zhang |
Documents disponibles écrits par cet auteur (1)
Ajouter le résultat dans votre panier Affiner la recherche Interroger des sources externes
Land cover classification models using Shuttle Imaging Radar (SIR-C) data: a case study in New Hampshire, USA / R. Narayanan in Geocarto international, vol 17 n° 3 (September - November 2002)
[article]
Titre : Land cover classification models using Shuttle Imaging Radar (SIR-C) data: a case study in New Hampshire, USA Type de document : Article/Communication Auteurs : R. Narayanan, Auteur ; Jing Zhang, Auteur Année de publication : 2002 Article en page(s) : pp 57 - 65 Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Traitement d'image radar et applications
[Termes IGN] classification dirigée
[Termes IGN] classification par maximum de vraisemblance
[Termes IGN] classification par réseau neuronal
[Termes IGN] covariance
[Termes IGN] fréquence
[Termes IGN] image radar
[Termes IGN] image SIR-C
[Termes IGN] New Hampshire (Etats-Unis)
[Termes IGN] occupation du sol
[Termes IGN] polarisation
[Termes IGN] précision de la classification
[Termes IGN] réalité de terrain
[Termes IGN] varianceRésumé : (Auteur) Spaceborne synthetic aperture radar (SAR) systems have the ability to provide high resolution information on land cover characteristics under adverse conditions such as darkness or cloud cover. The use of multiple frequencies and multiple polarizations yields better classification accuracies. The results of various land cover classification algorithms using Shuttle Imaging Radar (SIR-C) SAR data as applied to a site in Suncook, New Hampshire, are described in this paper. Three classification models were developed and tested: minimum distance classification, maximum a posteriori probability classification, and neural network classification. Using the available ground truth information, land cover was classified into five distinct regions: water, swamp, sand, trees, and grass. All three methods were applied to the same site and results compared. The maximum a posteriori probability approach yielded the highest overall classification accuracy on a pixelbypixel basis. Although the minimum distance approach was simpler than the maximum a posteriori approach, its performance was not as good as the latter since it did not use the covariance information between the data channels. The neural network approach performed well and its results were comparable to the maximum a posteriori approach when the variance of the data was small; however, its performance degraded rapidly when the variance of the data was high. Numéro de notice : A2002-286 Affiliation des auteurs : non IGN Thématique : IMAGERIE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.1080/10106040208542245 En ligne : https://doi.org/10.1080/10106040208542245 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=22197
in Geocarto international > vol 17 n° 3 (September - November 2002) . - pp 57 - 65[article]Exemplaires(1)
Code-barres Cote Support Localisation Section Disponibilité 059-02031 RAB Revue Centre de documentation En réserve L003 Disponible