Détail de l'auteur
Auteur Xiaoyun Zheng |
Documents disponibles écrits par cet auteur (1)
Ajouter le résultat dans votre panier Affiner la recherche Interroger des sources externes
Point-of-interest detection from Weibo data for map updating / Xue Yang in Transactions in GIS, vol 26 n° 6 (September 2022)
[article]
Titre : Point-of-interest detection from Weibo data for map updating Type de document : Article/Communication Auteurs : Xue Yang, Auteur ; Jie Gao, Auteur ; Xiaoyun Zheng, Auteur ; et al., Auteur Année de publication : 2022 Article en page(s) : pp 2716 - 2738 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Géomatique web
[Termes IGN] classification par forêts d'arbres décisionnels
[Termes IGN] commerce de détail
[Termes IGN] détection automatique
[Termes IGN] détection de changement
[Termes IGN] données issues des réseaux sociaux
[Termes IGN] géocodage
[Termes IGN] inférence
[Termes IGN] information sémantique
[Termes IGN] mise à jour cartographique
[Termes IGN] point d'intérêt
[Termes IGN] Wuhan (Chine)Résumé : (auteur) Points-of-interest (POIs) geographic information system data are increasingly important for supporting map generation and navigation services, although updating their semantic and location information still largely depends on manual labor. In this study, we propose a novel method to automatically detect the changes in POIs from Chinese text and check-in position data provided by the Chinese social media platform, Weibo. The proposed method includes three steps: (1) POI name recognition; (2) location confirmation; (3) and change detection. First, we propose recognizing a POI's name from Weibo text using the improved conditional random field algorithm. Then, we detect the location of each named POI by integrating the text address with the check-in position. The changes in the detected POIs are recognized by extracting the status words from Weibo text and a three-level status word database. To verify the effectiveness of the proposed method, we examine Wuhan as a case and detect the changes in the commercial POI using real-world Weibo data collected from January to September 2020. Based on the validation of three common map platforms, the data provided and the manual field investigation of 55 random samples, the identification accuracies for newly added POIs, the unchanged POIs, and expired POIs are approximately 100, 95.8, and 91.7%, respectively. Numéro de notice : A2022-734 Affiliation des auteurs : non IGN Thématique : GEOMATIQUE Nature : Article DOI : 10.1111/tgis.12982 Date de publication en ligne : 04/09/2022 En ligne : https://doi.org/10.1111/tgis.12982 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=101701
in Transactions in GIS > vol 26 n° 6 (September 2022) . - pp 2716 - 2738[article]