Détail de l'auteur
Auteur Renrong Chen |
Documents disponibles écrits par cet auteur (1)
Ajouter le résultat dans votre panier Affiner la recherche Interroger des sources externes
Identify urban building functions with multisource data: a case study in Guangzhou, China / Yingbin Deng in International journal of geographical information science IJGIS, vol 36 n° 10 (October 2022)
[article]
Titre : Identify urban building functions with multisource data: a case study in Guangzhou, China Type de document : Article/Communication Auteurs : Yingbin Deng, Auteur ; Renrong Chen, Auteur ; Yang Ji, Auteur ; et al., Auteur Année de publication : 2022 Article en page(s) : pp 2060 - 2085 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Applications de télédétection
[Termes IGN] approche hiérarchique
[Termes IGN] batiment commercial
[Termes IGN] bâtiment industriel
[Termes IGN] bâtiment public
[Termes IGN] Canton (Kouangtoung)
[Termes IGN] données multisources
[Termes IGN] empreinte
[Termes IGN] exploration de données
[Termes IGN] Extreme Gradient Machine
[Termes IGN] figure géométrique
[Termes IGN] image Gaofen
[Termes IGN] logement
[Termes IGN] point d'intérêt
[Termes IGN] zone urbaineRésumé : (auteur) Building function type is an important parameter for urban planning and disaster management. However, existing identification methods do not always correctly recognize all building functions because of missing point of interest (POI) data in private areas. In this study, we proposed a hierarchical data-mining model to identify building function types using accessible auxiliary data, which was then applied to a case study. Residential building property was assessed to address missing residential POIs. The building functions were assigned to one of five different types, or a mixed-function type. Standard deviation and mean values extracted from remotely sensed images, distances to major roads, and building shape parameters were used to infer the function types of buildings without assigned function types. The proposed model was able to identify 65% of buildings not previously assigned as residential through the POI, with an overall accuracy of 87%. In addition, all buildings were successfully assigned a function type of residential, commercial, office, warehouse, public service, or mixed-function, with an overall accuracy of 85% for unclassified buildings. Our results demonstrated that missing POI data in private areas could be addressed by integration with multisource data using a simple method. Numéro de notice : A2022-739 Affiliation des auteurs : non IGN Thématique : GEOMATIQUE/IMAGERIE/URBANISME Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.1080/13658816.2022.2046756 Date de publication en ligne : 07/03/2022 En ligne : https://doi.org/10.1080/13658816.2022.2046756 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=101716
in International journal of geographical information science IJGIS > vol 36 n° 10 (October 2022) . - pp 2060 - 2085[article]