Détail de l'auteur
Auteur Ylenia Casali |
Documents disponibles écrits par cet auteur (1)
Ajouter le résultat dans votre panier Affiner la recherche Interroger des sources externes
Machine learning for spatial analyses in urban areas: a scoping review / Ylenia Casali in Sustainable Cities and Society, vol 85 (October 2022)
[article]
Titre : Machine learning for spatial analyses in urban areas: a scoping review Type de document : Article/Communication Auteurs : Ylenia Casali, Auteur ; Nazli Yonca Aydin, Auteur ; Tina Comes, Auteur Année de publication : 2022 Article en page(s) : n° 104050 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Analyse spatiale
[Termes IGN] algorithme d'apprentissage
[Termes IGN] analyse spatio-temporelle
[Termes IGN] apprentissage automatique
[Termes IGN] distribution spatiale
[Termes IGN] espace urbain
[Termes IGN] littérature
[Termes IGN] source de données
[Termes IGN] urbanisme
[Termes IGN] ville durable
[Termes IGN] zone urbaineRésumé : (auteur) The challenges for sustainable cities to protect the environment, ensure economic growth, and maintain social justice have been widely recognized. Along with the digitization, availability of large datasets, Machine Learning (ML) and Artificial Intelligence (AI) are promising to revolutionize the way we analyze and plan urban areas, opening new opportunities for the sustainable city agenda. Especially urban spatial planning problems can benefit from ML approaches, leading to an increasing number of ML publications across different domains. What is missing is an overview of the most prominent domains in spatial urban ML along with a mapping of specific applied approaches. This paper aims to address this gap and guide researchers in the field of urban science and spatial data analysis to the most used methods and unexplored research gaps. We present a scoping review of ML studies that used geospatial data to analyze urban areas. Our review focuses on revealing the most prominent topics, data sources, ML methods and approaches to parameter selection. Furthermore, we determine the most prominent patterns and challenges in the use of ML. Through our analysis, we identify knowledge gaps in ML methods for spatial data science and data specifications to guide future research. Numéro de notice : A2022-765 Affiliation des auteurs : non IGN Thématique : GEOMATIQUE/URBANISME Nature : Article DOI : 10.1016/j.scs.2022.104050 Date de publication en ligne : 12/07/2022 En ligne : https://doi.org/10.1016/j.scs.2022.104050 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=101786
in Sustainable Cities and Society > vol 85 (October 2022) . - n° 104050[article]