Détail de l'auteur
Auteur Xiangwei Xing |
Documents disponibles écrits par cet auteur (1)
Ajouter le résultat dans votre panier Affiner la recherche Interroger des sources externes
A relation-augmented embedded graph attention network for remote sensing object detection / Shu Tian in IEEE Transactions on geoscience and remote sensing, vol 60 n° 10 (October 2022)
[article]
Titre : A relation-augmented embedded graph attention network for remote sensing object detection Type de document : Article/Communication Auteurs : Shu Tian, Auteur ; Lihong Kang, Auteur ; Xiangwei Xing, Auteur ; et al., Auteur Année de publication : 2022 Article en page(s) : n° 1000718 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Traitement d'image optique
[Termes IGN] attention (apprentissage automatique)
[Termes IGN] classification par réseau neuronal convolutif
[Termes IGN] détection d'objet
[Termes IGN] graphe
[Termes IGN] image à haute résolution
[Termes IGN] information sémantique
[Termes IGN] relation sémantique
[Termes IGN] relation spatiale
[Termes IGN] réseau neuronal de graphes
[Termes IGN] SIFT (algorithme)Résumé : (auteur) Multiclass geospatial object detection in high spatial resolution remote sensing imagery (HSRI) is still a challenging task. The main reason is that the objects in HRSI are location-variable and semantic-confusable, which results in the difficulties in differentiating the complicated spatial patterns and deriving the implicitly semantic labels among different categories of objects. In this article, we propose a relation-augmented embedded graph attention network (EGAT), which enables the full exploitation of the underlying spatial and semantic relations among objects for improving the detection performance. Specifically, we first construct two sets of spatial and semantic graphs of objects–objects for object relations modeling. Second, a Siamese architecture-based embedding spatial and semantic graph attention network is designed for relations reasoning, which is implemented by introducing the long short-term memory (LSTM) mechanism into the EGAT, for learning the relations among different categories of intraobjects and interobjects. Driven by the spatial and semantic LSTM, the EGAT-LSTM can adaptively focus on the critical information of reason graphs for spatial–semantic correlation discrimination in the embedding non-Euclidean feature space. By this way, the EGAT-LSTM can effectively capture the global and local spatial–semantic relationships of objects–objects, and then produce relations-augmented features for improving the performance of object detection. We conduct comprehensive experiments on three public datasets for multiclass geospatial object detection. Our method achieves state-of-the-art performance, which demonstrates the superiority and effectiveness of the proposed method. Numéro de notice : A2022-766 Affiliation des auteurs : non IGN Thématique : IMAGERIE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.1109/TGRS.2021.3073269 Date de publication en ligne : 18/05/2021 En ligne : https://doi.org/10.1109/TGRS.2021.3073269 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=101788
in IEEE Transactions on geoscience and remote sensing > vol 60 n° 10 (October 2022) . - n° 1000718[article]