Détail de l'auteur
Auteur Faraz Malik Awan |
Documents disponibles écrits par cet auteur (1)
Ajouter le résultat dans votre panier Affiner la recherche Interroger des sources externes
Towards synthetic sensing for smart cities : a machine/deep learning-based approach / Faraz Malik Awan (2022)
Titre : Towards synthetic sensing for smart cities : a machine/deep learning-based approach Type de document : Thèse/HDR Auteurs : Faraz Malik Awan, Auteur ; Noël Crespi, Directeur de thèse ; Roberto Minerva, Directeur de thèse Editeur : Courcouronnes : Télécom SudParis Année de publication : 2022 Importance : 106 p. Format : 21 x 30 cm Note générale : bibliographie
Thèse de doctorat de l’Institut Polytechnique de Paris préparée à Telecom SudParis, Spécialité InformatiqueLangues : Anglais (eng) Descripteur : [Vedettes matières IGN] Intelligence artificielle
[Termes IGN] analyse comparative
[Termes IGN] apprentissage automatique
[Termes IGN] apprentissage profond
[Termes IGN] classification par arbre de décision
[Termes IGN] classification par forêts d'arbres décisionnels
[Termes IGN] classification par Perceptron multicouche
[Termes IGN] Espagne
[Termes IGN] parking
[Termes IGN] plus proche voisin, algorithme du
[Termes IGN] pollution acoustique
[Termes IGN] pollution atmosphérique
[Termes IGN] réseau neuronal récurrent
[Termes IGN] système de transport intelligent
[Termes IGN] trafic routier
[Termes IGN] ville intelligenteIndex. décimale : THESE Thèses et HDR Résumé : (auteur) We worked on one of the most significant research directions in Smart City, i.e., Intelligent Transportation System (ITS). ITS encapsulates several domains, such as electronic vehicles notification systems, traffic information, smart parking, and environment. However, in this thesis, we target two of its important domains; i) Smart Parking, and ii) Road Traffic. We started our research with Smart Parking use case. Performing literature review, we realized that different Machine Learning (ML) and Deep Learning (DL) approaches have been used for smart parking solutions. In most of these proposed approaches, enclosed parking areas were targeted with different feature sets to predict the "occupancy rate" in parking areas. It inspired us to conduct a comparative analysis to answer following questions; Given the parking prediction use case, how do the traditional ML models perform as compared to complex DL models? Provided big data, can less complex, traditional ML models outperform complex DL models? How well these models can perform to predict the availability of the individual on-street parking spots rather than predicting the overall occupancy rate of an enclosed parking area. To answer these questions, we choose five well-known classical ML algorithms (K-Nearest Neighbours, Random Forest, Decision Tree) and DL algorithm (Multilayer Perceptron). To take our investigation into depth, we train Ensemble Learning Model, in which we combine all the above-mentioned ML and DL models. A huge parking dataset of city of Santander, Spain, has been used which consists of around 25 million records. We also propose to recommend available parking spots based on the current location of the driver. Moving forward with our research goals, we performed literature review on road traffic and found road traffic associated with air pollution and noise pollution often. However, to the best of our knowledge, air pollution & noise pollution have never been use d in traffic prediction problem. In this part of our research, firstly we used air pollution (CO, NO, NO2, NOx, and O3) along with the atmospheric variables, such as wind speed, wind direction, temperature, and pressure to improve the traffic forecasting in the city of Madrid. This successful experiment motivated us to extend our investigation to another factor, which is also strongly correlated with road traffic i.e., noise pollution. Hence, as an extension of our previous work, in this part of our research, we use noise pollution to improve the traffic prediction in the city of Madrid. Note de contenu : 1- Introduction
2- Parking space prediction using classical ML and deep learning models
3- Road traffic prediction improvement using air pollution and atmospheric data
4- Using noise pollution to improve traffic prediction
5- Conclusion and future workNuméro de notice : 20025 Affiliation des auteurs : non IGN Thématique : INFORMATIQUE/URBANISME Nature : Thèse française Note de thèse : Thèse de Doctorat : Informatique : Telecom SudParis : 2022 Organisme de stage : SAMOVAR DOI : sans En ligne : https://tel.hal.science/tel-03722891/ Format de la ressource électronique : URL Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=101825