Détail de l'auteur
Auteur Dong Wang |
Documents disponibles écrits par cet auteur (1)
Ajouter le résultat dans votre panier Affiner la recherche Interroger des sources externes
The iterative convolution–thresholding method (ICTM) for image segmentation / Dong Wang in Pattern recognition, vol 130 (October 2022)
[article]
Titre : The iterative convolution–thresholding method (ICTM) for image segmentation Type de document : Article/Communication Auteurs : Dong Wang, Auteur ; Xiaoping Wang, Auteur Année de publication : 2022 Article en page(s) : n° 108794 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Traitement d'image optique
[Termes IGN] contour
[Termes IGN] convergence
[Termes IGN] filtrage numérique d'image
[Termes IGN] image à haute résolution
[Termes IGN] itération
[Termes IGN] segmentation d'image
[Termes IGN] seuillageRésumé : (auteur) Variational methods, which have been tremendously successful in image segmentation, work by minimizing a given objective functional. The objective functional usually consists of a fidelity term and a regularization term. Because objective functionals may vary from different types of images, developing an efficient, simple, and general numerical method to minimize them has become increasingly vital. However, many existing methods are model-based, converge relatively slowly, or involve complicated techniques. In this paper, we develop a novel iterative convolution–thresholding method (ICTM) that is simple, efficient, and applicable to a wide range of variational models for image segmentation. In ICTM, the interface between two different segment domains is implicitly represented by the characteristic functions of domains. The fidelity term is usually written into a linear functional of the characteristic functions, and the regularization term is approximated by a functional of characteristic functions in terms of heat kernel convolution. This allows us to design an iterative convolution–thresholding method to minimize the approximate energy. The method has the energy-decaying property, and thus the unconditional stability is theoretically guaranteed. Numerical experiments show that the method is simple, easy to implement, robust, and applicable to various image segmentation models. Numéro de notice : A2022-779 Affiliation des auteurs : non IGN Thématique : IMAGERIE Nature : Article DOI : 10.1016/j.patcog.2022.108794 Date de publication en ligne : 14/05/2022 En ligne : https://doi.org/10.1016/j.patcog.2022.108794 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=101857
in Pattern recognition > vol 130 (October 2022) . - n° 108794[article]