Détail de l'auteur
Auteur Yegane Khosravi |
Documents disponibles écrits par cet auteur (1)
Ajouter le résultat dans votre panier Affiner la recherche Interroger des sources externes
Assessing road accidents in spatial context via statistical and non-statistical approaches to detect road accident hotspot using GIS / Yegane Khosravi in Geodetski vestnik, vol 66 n° 3 (September - November 2022)
[article]
Titre : Assessing road accidents in spatial context via statistical and non-statistical approaches to detect road accident hotspot using GIS Type de document : Article/Communication Auteurs : Yegane Khosravi, Auteur ; Farhad Hosseinali, Auteur ; Mostafa Adresi, Auteur Année de publication : 2022 Article en page(s) : pp 412 - 431 Note générale : bibliographie Langues : Anglais (eng) Slovène (slv) Descripteur : [Vedettes matières IGN] Analyse spatiale
[Termes IGN] accident de la route
[Termes IGN] analyse de groupement
[Termes IGN] autocorrélation spatiale
[Termes IGN] classification par nuées dynamiques
[Termes IGN] corrélation automatique de points homologues
[Termes IGN] distance de Manhattan
[Termes IGN] estimation par noyau
[Termes IGN] Iran
[Termes IGN] méthode statistique
[Termes IGN] pente
[Termes IGN] processus de hiérarchisation analytique
[Termes IGN] regroupement de données
[Termes IGN] système d'information géographiqueRésumé : (auteur) Road accidents are among the most critical causes of fatality, personal injuries, and financial damage worldwide. Identifying accident hotspots and the causes of accidents and improving the condition of these hotspots is an economical way to improve road traffic safety. In this study, to identify the accident hotspots of “Dehbala” road located in Yazd province-Iran, statistical and non-statistical clustering methods were used. First, the weighting of the criteria was performed by an expert using the AHP method. Hence, the spatial correlation of slope and curvature was calculated by Global Moran’I. Anselin Local Moran index and Getis-Ord Gi* and Kernel Density Estimation were used to identify accident hotspots based on accident location due to the density of points. As a result, four accident hotspots were obtained by the Anselin Local Moran index, three accident hotspots by Getis-Ord Gi*and one accident-prone area were obtained by Kernel Density Estimation method. Three algorithms, k-means, k-medoids, and DBSCAN, were used to identify accident-prone areas or points using non-statistical methods. The dense cluster of each method was considered as an accident-prone cluster. Then the results of statistical and non- statistical methods were intersected with each other and the final accident-prone area was obtained. This study revealed the effect of geometric charcateristics of the road (slope and curvature) on the occurance of accidents. Numéro de notice : A2022-781 Affiliation des auteurs : non IGN Thématique : GEOMATIQUE Nature : Article DOI : 10.15292/geodetski-vestnik.2022.03.412-431 Date de publication en ligne : 04/08/2022 En ligne : https://doi.org/10.15292/geodetski-vestnik.2022.03.412-431 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=101864
in Geodetski vestnik > vol 66 n° 3 (September - November 2022) . - pp 412 - 431[article]Exemplaires(1)
Code-barres Cote Support Localisation Section Disponibilité 139-2022031 RAB Revue Centre de documentation En réserve L003 Disponible