Détail de l'auteur
Auteur Anthony Cohn |
Documents disponibles écrits par cet auteur (1)
Ajouter le résultat dans votre panier Affiner la recherche Interroger des sources externes
Titre : Location retrieval using qualitative place signatures of visible landmarks Type de document : Article/Communication Auteurs : Lijun Wei , Auteur ; Valérie Gouet-Brunet , Auteur ; Anthony Cohn, Auteur Editeur : Ithaca [New York - Etats-Unis] : ArXiv - Université Cornell Année de publication : 2022 Projets : 1-Pas de projet / Importance : 52 p. Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Traitement d'image optique
[Termes IGN] descripteur
[Termes IGN] lieu géométrique
[Termes IGN] point de repère
[Termes IGN] reconnaissance d'objets
[Termes IGN] relation spatialeRésumé : (auteur) Location retrieval based on visual information is to retrieve the location of an agent (e.g. human, robot) or the area they see by comparing the observations with a certain form of representation of the environment. Existing methods generally require precise measurement and storage of the observed environment features, which may not always be robust due to the change of season, viewpoint, occlusion, etc. They are also challenging to scale up and may not be applicable for humans due to the lack of measuring/imaging devices. Considering that humans often use less precise but easily produced qualitative spatial language and high-level semantic landmarks when describing an environment, a qualitative location retrieval method is proposed in this work by describing locations/places using qualitative place signatures (QPS), defined as the perceived spatial relations between ordered pairs of co-visible landmarks from viewers' perspective. After dividing the space into place cells each with individual signatures attached, a coarse-to-fine location retrieval method is proposed to efficiently identify the possible location(s) of viewers based on their qualitative observations. The usability and effectiveness of the proposed method were evaluated using openly available landmark datasets, together with simulated observations by considering the possible perception error. Numéro de notice : P2022-009 Affiliation des auteurs : UGE-LASTIG+Ext (2020- ) Thématique : IMAGERIE Nature : Preprint nature-HAL : Préprint DOI : 10.48550/arXiv.2208.00783 Date de publication en ligne : 26/07/2022 En ligne : https://doi.org/10.48550/arXiv.2208.00783 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=101879