Détail de l'auteur
Auteur Kourosh Shahryari Nia |
Documents disponibles écrits par cet auteur (1)
Ajouter le résultat dans votre panier Affiner la recherche Interroger des sources externes
Tidal level prediction using combined methods of harmonic analysis and deep neural networks in Southern coastline of Iran / Kourosh Shahryari Nia in Marine geodesy, vol 45 n° 6 (November 2022)
[article]
Titre : Tidal level prediction using combined methods of harmonic analysis and deep neural networks in Southern coastline of Iran Type de document : Article/Communication Auteurs : Kourosh Shahryari Nia, Auteur ; Mohammad Ali Sharifi, Auteur ; Saeed Farzaneh, Auteur Année de publication : 2022 Article en page(s) : pp 645 - 669 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Termes IGN] analyse harmonique
[Termes IGN] classification par Perceptron multicouche
[Termes IGN] classification par réseau neuronal convolutif
[Termes IGN] classification par réseau neuronal récurrent
[Termes IGN] données marégraphiques
[Termes IGN] Iran
[Termes IGN] marée océanique
[Termes IGN] modèle de simulation
[Termes IGN] niveau de la mer
[Vedettes matières IGN] AltimétrieRésumé : (auteur) Predicting tides and water levels had always been such an important topic for researchers and professionals since the study of tidal level has pivotal role in supporting marine economy, port construction projects and maritime transportation. Tidal water levels are a combination of astronomical (deterministic part) and non-astronomical (stochastic part) water levels. In this study, we combined Harmonic Analysis (HA) with three Deep Neural Networks (DNNs), namely the Long-Short Term Memory (LSTM), Convolution Neural Network (CNN), and Multilayer Perceptron (MLP). The HA method is used for predicting the astronomical components, while DNNs are used to predict the non-astronomical water level. We have used tide gauge data from three stations along the southern coastline of Iran to demonstrate the effectiveness and accuracy of our model. We utilized RMSE, MAE, R2 (r-squared), and MAPE to evaluate the performance of the model. Finally, The LSTM network shown superior performance in most of the cases, although other networks also show good results. All three DNNs have R2 of 0.99, and the RMSE, MAE, and MAPE indicate that errors are low. Numéro de notice : A2022-783 Affiliation des auteurs : non IGN Thématique : POSITIONNEMENT Nature : Article DOI : 10.1080/01490419.2022.2116615 Date de publication en ligne : 28/08/2022 En ligne : https://doi.org/10.1080/01490419.2022.2116615 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=101880
in Marine geodesy > vol 45 n° 6 (November 2022) . - pp 645 - 669[article]