Détail de l'auteur
Auteur Tiecoumba Ibrahim Tamela |
Documents disponibles écrits par cet auteur (1)
Ajouter le résultat dans votre panier
Visionner les documents numériques
Affiner la recherche Interroger des sources externes
Génération d’un jeu de données d’entraînement et mise en oeuvre d’une architecture de détection par deep learning des numéros de parcelles sur les plans du cadastre Napoléonien / Tiecoumba Ibrahim Tamela (2022)
Titre : Génération d’un jeu de données d’entraînement et mise en oeuvre d’une architecture de détection par deep learning des numéros de parcelles sur les plans du cadastre Napoléonien Type de document : Mémoire Auteurs : Tiecoumba Ibrahim Tamela, Auteur Editeur : Champs-sur-Marne : Ecole nationale des sciences géographiques ENSG Année de publication : 2022 Importance : 68 p. Format : 21 x 30 cm Note générale : Bibliographie
Mémoire de Master PPMD Photogrammétrie, Positionnement et Mesure de DéformationLangues : Français (fre) Descripteur : [Vedettes matières IGN] Traitement d'image optique
[Termes IGN] apprentissage profond
[Termes IGN] cadastre napoléonien
[Termes IGN] classification par réseau neuronal convolutif
[Termes IGN] colorimétrie
[Termes IGN] détection d'objet
[Termes IGN] données d'entrainement (apprentissage automatique)
[Termes IGN] manuscrit
[Termes IGN] parcelle cadastrale
[Termes IGN] planche cadastrale
[Termes IGN] reconnaissance de caractèresIndex. décimale : MPPMD Mémoires du mastère spécialisé Photogrammétrie, Positionnement et Mesures de Déformation Résumé : (auteur) Le laboratoire Géomatique et Foncier est un laboratoire du Conservatoire National des Arts et Métiers (CNAM). Le laboratoire mène des recherches sur deux axes principaux à savoir la géomatique et le droit et l’analyse de l’action publique. C’est dans le cadre de la recherche en géomatique, le laboratoire a initié, pour l’amélioration de sa chaîne GeoVectoMoCad (chaîne de vectorisation, Géoréférencement et Mosaïquage du cadastre), un travail sur la reconnaissance de numéros manuscrits sur les planches cadastrales par apprentissage profond. La détection par apprentissage profond, nécessite un jeu de données, similaire aux données que l’on veut étudier et en grandes quantité, pour permettre au réseau d’apprendre avec une partie des données et de faire de bonnes prédictions sur de nouvelles données. Pour cela, nous générons des données synthétiques en extrayant des fonds de cadastre réel sans chiffres, puis nous augmentons la donnée par des transformations et insérons des chiffres de la base de données DIDA. Puis, nous générons un deuxième jeu de données de sous-images extraites directement du cadastre. Enfin, nous appliquons un algorithme de reconnaissance de numéros sur les deux jeux de données. Après avoir appliqué ces algorithmes, nous présentons les résultats qui montrent de bons résultats de détection, mais parfois des problèmes de détection et de reconnaissance. Nous proposons pour terminer des pistes d’amélioration. Note de contenu : Introduction
1- Etat de l'art sur la reconnaissance des chiffres manuscrits des documents anciens
2- Création de jeu de données pour la détection de numéros de parcelles
3- Entrainement et évaluation du modèle sur les données
ConclusionNuméro de notice : 24058 Affiliation des auteurs : non IGN Thématique : IMAGERIE/INFORMATIQUE Nature : Mémoire masters divers Organisme de stage : Laboratoire de Géomatique et Foncier (ESGT-CNAM) Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=101964 Documents numériques
en open access
Génération d’un jeu de données... - pdf auteur -Adobe Acrobat PDF