Détail de l'auteur
Auteur Seyed Mohammad Ayazi |
Documents disponibles écrits par cet auteur (1)
Ajouter le résultat dans votre panier Affiner la recherche Interroger des sources externes
A boundary-based ground-point filtering method for photogrammetric point-cloud data / Seyed Mohammad Ayazi in Photogrammetric Engineering & Remote Sensing, PERS, vol 88 n° 9 (September 2022)
[article]
Titre : A boundary-based ground-point filtering method for photogrammetric point-cloud data Type de document : Article/Communication Auteurs : Seyed Mohammad Ayazi, Auteur ; Mohammad Saadatseresht, Auteur Année de publication : 2022 Article en page(s) : pp 583 - 591 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Photogrammétrie
[Termes IGN] canopée
[Termes IGN] détection de contours
[Termes IGN] filtrage de points
[Termes IGN] forêt
[Termes IGN] Iran
[Termes IGN] masque de végétation
[Termes IGN] montagne
[Termes IGN] polygone
[Termes IGN] semis de points
[Termes IGN] Triangulated Irregular NetworkRésumé : (auteur) Ground-point filtering from point-cloud data is an important process in remote sensing and the photogrammetric map-production line, especially in generating digital elevation models from airborne lidar and aerial photogrammetric point-cloud data. In this article, a new and simple boundary-based method is proposed for ground-point filtering from the photogrammetric point-cloud data. The proposed method uses the local height difference to extract the boundaries of objects. Then the extracted boundary points are traced to generate polygons around the borders of any objects on the ground. Finally, the points located inside these polygons, which are classified as non-ground points, are filtered. The experimental results on the photogrammetric point cloud show that the proposed method can adapt to complex environments. The total error of the proposed method is about 8.96%, which is promising in these challenging data sets. Moreover, the proposed method is compared with cloth simulation filtering, multi-scale curvature classification, and gLiDAR methods and gives better results. Numéro de notice : A2022-811 Affiliation des auteurs : non IGN Thématique : IMAGERIE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.14358/PERS.21-00084R2 Date de publication en ligne : 01/09/2022 En ligne : https://doi.org/10.14358/PERS.21-00084R2 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=101971
in Photogrammetric Engineering & Remote Sensing, PERS > vol 88 n° 9 (September 2022) . - pp 583 - 591[article]Exemplaires(1)
Code-barres Cote Support Localisation Section Disponibilité 105-2022091 SL Revue Centre de documentation Revues en salle Disponible