Détail de l'auteur
Auteur Tianyu Guo |
Documents disponibles écrits par cet auteur (1)
Ajouter le résultat dans votre panier Affiner la recherche Interroger des sources externes
The fractional vegetation cover (FVC) and associated driving factors of modeling in mining areas / Jun Li in Photogrammetric Engineering & Remote Sensing, PERS, vol 88 n° 10 (October 2022)
[article]
Titre : The fractional vegetation cover (FVC) and associated driving factors of modeling in mining areas Type de document : Article/Communication Auteurs : Jun Li, Auteur ; Tianyu Guo, Auteur ; Chengye Zhang, Auteur ; et al., Auteur Année de publication : 2022 Article en page(s) : pp 665 - 671 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Applications de télédétection
[Termes IGN] analyse comparative
[Termes IGN] Chine
[Termes IGN] couvert végétal
[Termes IGN] Google Earth Engine
[Termes IGN] hétérogénéité spatiale
[Termes IGN] image Landsat-ETM+
[Termes IGN] image Landsat-OLI
[Termes IGN] industrie minière
[Termes IGN] mine
[Termes IGN] Normalized Difference Vegetation Index
[Termes IGN] régression géographiquement pondérée
[Termes IGN] régression multiple
[Termes IGN] réseau neuronal artificielRésumé : (auteur) To determine the fractional vegetation cover (FVC) and associated driving factors of modeling in mining areas, six types of data were used as driving factors and three methods —multi-linear regression (MLR), geographically weighted regression (GWR), and geographically weighted artificial neural network (GWANN)— were adopted in the modeling. The experiments, conducted in Shengli mining areas located in Xilinhot city, China, show that the MLR model without consideration of spatial heterogeneity and spatial non-stationarity performs the worst and that the GWR model presents obvious location differences, since it predefines a linear relationship which is unable to describe FVC for some locations. The GWANN model, improving on these defects, is the most suitable model for the FVC driving process in mining areas; it outperforms the other two models, with root-mean-square error (RMSE) and mean absolute percentage error (MAPE) reaching 0.16 and 0.20. It has improvements of approximately 24% in RMSE and 33% in MAPE compared to the MLR model, and those values grow to 59% and 71% when compared with the GWR model. Numéro de notice : A2022-813 Affiliation des auteurs : non IGN Thématique : IMAGERIE/INFORMATIQUE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.14358/PERS.21-00070R3 Date de publication en ligne : 01/10/2022 En ligne : https://doi.org/10.14358/PERS.21-00070R3 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=101973
in Photogrammetric Engineering & Remote Sensing, PERS > vol 88 n° 10 (October 2022) . - pp 665 - 671[article]Exemplaires(1)
Code-barres Cote Support Localisation Section Disponibilité 105-2022101 SL Revue Centre de documentation Revues en salle Disponible