Détail de l'auteur
Auteur Blaise Petitpierre |
Documents disponibles écrits par cet auteur (1)
Ajouter le résultat dans votre panier Affiner la recherche Interroger des sources externes
Beyond topo-climatic predictors: Does habitats distribution and remote sensing information improve predictions of species distribution models? / Arthur Sanguet in Global ecology and conservation, vol 39 (November 2022)
[article]
Titre : Beyond topo-climatic predictors: Does habitats distribution and remote sensing information improve predictions of species distribution models? Type de document : Article/Communication Auteurs : Arthur Sanguet, Auteur ; Nicolas Wyler, Auteur ; Blaise Petitpierre, Auteur ; et al., Auteur Année de publication : 2022 Article en page(s) : n° e02286 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Termes IGN] carte d'occupation du sol
[Termes IGN] changement climatique
[Termes IGN] distribution spatiale
[Termes IGN] échantillonnage de données
[Termes IGN] habitat (nature)
[Termes IGN] modèle de simulation
[Termes IGN] montagne
[Termes IGN] pédologie locale
[Termes IGN] Suisse
[Termes IGN] télédétection
[Termes IGN] topographie locale
[Termes IGN] zone humide
[Vedettes matières IGN] Ecologie forestièreRésumé : (auteur) Species Distribution Models (SDM) represent a powerful tool to predict species’ habitat suitability on a landscape and fill the gap between truncated observation data and all possible locations. SDMs have been widely used in theoretical studies of species niches as well as in conservation applications. Here, we evaluated the impacts of predictors’ type on models’ performances and spatial predictions using 72 plant species belonging to six ecological groups at a regional scale in the area of Geneva (Switzerland). Twelve models were created using various combinations of high-resolution (25 m) explanatory variables including topography, pedology, climate, habitats and remote sensing data. Models integrating a combination of habitats and topopedo-climatic predictors had significantly higher performances, while remote sensing predictors showed low performances. Our results suggest that the number and the level of details of habitat predictors (broad or very precise) do not fundamentally affect prediction maps. However, selecting too few, overly simplified or exceedingly complex habitat predictors tend to lower models’ performances. The use of eight habitat categories complemented with eight topopedo-climatic predictors produced models with the highest performances. Ecological groups of species responded differently to models and while alpine and ruderal species have greater average performances due to a high affinity with topopedo-climatic predictors, wetlands’ species were less performant on average. These results underline the necessity of developing or having access to habitats distribution data especially in a conservation context. Numéro de notice : A2022-815 Affiliation des auteurs : non IGN Thématique : BIODIVERSITE/FORET Nature : Article DOI : 10.1016/j.gecco.2022.e02286 Date de publication en ligne : 13/09/2022 En ligne : https://doi.org/10.1016/j.gecco.2022.e02286 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=101977
in Global ecology and conservation > vol 39 (November 2022) . - n° e02286[article]