Détail de l'auteur
Auteur Seyran Khademi |
Documents disponibles écrits par cet auteur (1)
Ajouter le résultat dans votre panier Affiner la recherche Interroger des sources externes
Reconstructing compact building models from point clouds using deep implicit fields / Zhaiyu Chen in ISPRS Journal of photogrammetry and remote sensing, vol 194 (December 2022)
[article]
Titre : Reconstructing compact building models from point clouds using deep implicit fields Type de document : Article/Communication Auteurs : Zhaiyu Chen, Auteur ; Hugo Ledoux, Auteur ; Seyran Khademi, Auteur ; et al., Auteur Année de publication : 2022 Article en page(s) : pp 58 - 73 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Lasergrammétrie
[Termes IGN] apprentissage profond
[Termes IGN] Bâti-3D
[Termes IGN] champ aléatoire de Markov
[Termes IGN] données lidar
[Termes IGN] données localisées 3D
[Termes IGN] extraction de modèle
[Termes IGN] image à haute résolution
[Termes IGN] maillage par triangles
[Termes IGN] optimisation (mathématiques)
[Termes IGN] polygone
[Termes IGN] reconstruction 3D du bâti
[Termes IGN] semis de pointsRésumé : (auteur) While three-dimensional (3D) building models play an increasingly pivotal role in many real-world applications, obtaining a compact representation of buildings remains an open problem. In this paper, we present a novel framework for reconstructing compact, watertight, polygonal building models from point clouds. Our framework comprises three components: (a) a cell complex is generated via adaptive space partitioning that provides a polyhedral embedding as the candidate set; (b) an implicit field is learned by a deep neural network that facilitates building occupancy estimation; (c) a Markov random field is formulated to extract the outer surface of a building via combinatorial optimization. We evaluate and compare our method with state-of-the-art methods in generic reconstruction, model-based reconstruction, geometry simplification, and primitive assembly. Experiments on both synthetic and real-world point clouds have demonstrated that, with our neural-guided strategy, high-quality building models can be obtained with significant advantages in fidelity, compactness, and computational efficiency. Our method also shows robustness to noise and insufficient measurements, and it can directly generalize from synthetic scans to real-world measurements. The source code of this work is freely available at https://github.com/chenzhaiyu/points2poly. Numéro de notice : A2022-824 Affiliation des auteurs : non IGN Thématique : IMAGERIE/INFORMATIQUE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.1016/j.isprsjprs.2022.09.017 Date de publication en ligne : 17/10/2022 En ligne : https://doi.org/10.1016/j.isprsjprs.2022.09.017 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=102001
in ISPRS Journal of photogrammetry and remote sensing > vol 194 (December 2022) . - pp 58 - 73[article]