Détail de l'auteur
Auteur Samui Pijush |
Documents disponibles écrits par cet auteur (1)
Ajouter le résultat dans votre panier Affiner la recherche Interroger des sources externes
Improving accuracy of local geoid model using machine learning approaches and residuals of GPS/levelling geoid height / Mosbeh R. Kaloop in Survey review, vol 54 n° 387 (November 2022)
[article]
Titre : Improving accuracy of local geoid model using machine learning approaches and residuals of GPS/levelling geoid height Type de document : Article/Communication Auteurs : Mosbeh R. Kaloop, Auteur ; Samui Pijush, Auteur ; Mostafa Rabah, Auteur ; et al., Auteur Année de publication : 2022 Article en page(s) : pp 505 - 518 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Géodésie physique
[Termes IGN] apprentissage automatique
[Termes IGN] géoïde gravimétrique
[Termes IGN] géoïde local
[Termes IGN] Koweit
[Termes IGN] MNS SRTM
[Termes IGN] modèle de géopotentiel
[Termes IGN] nivellement avec assistance GPS
[Termes IGN] processus gaussien
[Termes IGN] régression
[Termes IGN] régression multivariée par spline adaptative
[Termes IGN] résiduRésumé : (auteur) This study aims to use GPS/Levelling data and machine learning techniques (MLs) to model a high precision local geoid for Kuwait. To improve the accuracy of a local geoid the global geopotential model and local terrain effect should be incorporated. The geoid model was improved based on the modelling of geoid residuals using three MLs. Minimax Probability Machine Regression (MPMR), Gaussian Process Regression (GPR), and Multivariate Adaptive Regression Splines (MARS) MLs were developed for modelling the calculated geoid residuals. The results show that the accuracy of the three MLs was improved compared to previous studies, and the accuracy of the GPR model was better than the other models. The standard deviations of Kuwait geoid undulation determined by GPS/Levelling, gravimetric, and developed GPR models were 1.377, 1.375, 1.375 m, respectively. Thus, the developed GPR model has successfully predicted an accurate geoid height of Kuwait with maximum variation approaches ±0.02 m. Numéro de notice : A2022-829 Affiliation des auteurs : non IGN Thématique : POSITIONNEMENT Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.1080/00396265.2021.1970918 Date de publication en ligne : 27/08/2021 En ligne : https://doi.org/10.1080/00396265.2021.1970918 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=102013
in Survey review > vol 54 n° 387 (November 2022) . - pp 505 - 518[article]