Détail de l'auteur
Auteur Benjamin T. Gutierrez |
Documents disponibles écrits par cet auteur (1)
Ajouter le résultat dans votre panier Affiner la recherche Interroger des sources externes
Integrating Bayesian networks to forecast sea-level rise impacts on barrier island characteristics and habitat availability / Benjamin T. Gutierrez in Earth and space science, vol 9 n° 11 (November 2022)
[article]
Titre : Integrating Bayesian networks to forecast sea-level rise impacts on barrier island characteristics and habitat availability Type de document : Article/Communication Auteurs : Benjamin T. Gutierrez, Auteur ; Sarah Zeigler, Auteur ; Erika Lentz, Auteur ; et al., Auteur Année de publication : 2022 Article en page(s) : 24 p. Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Analyse spatiale
[Termes IGN] analyse de sensibilité
[Termes IGN] changement climatique
[Termes IGN] géomorphologie
[Termes IGN] habitat animal
[Termes IGN] île
[Termes IGN] modèle de simulation
[Termes IGN] montée du niveau de la mer
[Termes IGN] New York (Etats-Unis ; ville)
[Termes IGN] planification côtière
[Termes IGN] réseau bayesien
[Termes IGN] submersion marine
[Termes IGN] surveillance du littoral
[Termes IGN] trait de côteRésumé : (auteur) Evaluation of sea-level rise (SLR) impacts on coastal landforms and habitats is a persistent need for informing coastal planning and management, including policy decisions, particularly those that balance human interests and habitat protection throughout the coastal zone. Bayesian networks (BNs) are used to model barrier island change under different SLR scenarios that are relevant to management and policy decisions. BNs utilized here include a shoreline change model and two models of barrier island biogeomorphological evolution at different scales (50 and 5 m). These BNs were then linked to another BN to predict habitat availability for piping plovers (Charadrius melodus), a threatened shorebird reliant on beach habitats. We evaluated the performance of the two linked geomorphology BNs and further examined error rates by generating hindcasts of barrier island geomorphology and habitat availability for 2014 conditions. Geomorphology hindcasts revealed that model error declined with a greater number of known inputs, with error rates reaching 55% when multiple outputs were hindcast simultaneously. We also found that, although error in predictions of piping plover nest presence/absence increased when outputs from the geomorphology BNs were used as inputs in the piping plover habitat BN, the maximum error rate for piping plover habitat suitability in the fully-linked BNs was only 30%. Our findings suggest this approach may be useful for guiding scenario-based evaluations where known inputs can be used to constrain variables that produce higher uncertainty for morphological predictions. Overall, the approach demonstrates a way to assimilate data and model structures with uncertainty to produce forecasts to inform coastal planning and management. Numéro de notice : A2022-883 Affiliation des auteurs : non IGN Thématique : GEOMATIQUE Nature : Article DOI : 10.1029/2022EA002286 Date de publication en ligne : 14/10/2022 En ligne : https://doi.org/10.1029/2022EA002 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=102024
in Earth and space science > vol 9 n° 11 (November 2022) . - 24 p.[article]