Détail de l'auteur
Auteur Qiang Liu |
Documents disponibles écrits par cet auteur (1)
Ajouter le résultat dans votre panier Affiner la recherche Interroger des sources externes
Investigation of recognition and classification of forest fires based on fusion color and textural features of images / Cong Li in Forests, vol 13 n° 10 (October 2022)
[article]
Titre : Investigation of recognition and classification of forest fires based on fusion color and textural features of images Type de document : Article/Communication Auteurs : Cong Li, Auteur ; Qiang Liu, Auteur ; Binrui Li, Auteur ; et al., Auteur Année de publication : 2022 Article en page(s) : n° 1719 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Traitement d'image optique
[Termes IGN] analyse texturale
[Termes IGN] base de données d'images
[Termes IGN] classification par séparateurs à vaste marge
[Termes IGN] extraction de traits caractéristiques
[Termes IGN] image RVB
[Termes IGN] incendie de forêt
[Termes IGN] matrice de co-occurrence
[Termes IGN] motif binaire local
[Termes IGN] niveau de gris (image)Résumé : (auteur) An image recognition and classification method based on fusion color and textural features was studied. Firstly, the suspected forest fire region was segmented via the fusion RGB-YCbCr color spaces. Then, 10 kinds of textural features were extracted by a local binary pattern (LBP) algorithm and 4 kinds of textural features were extracted by a gray-level co-occurrence matrix (GLCM) algorithm from the suspected fire region. In terms of its application, a database of the forest fire textural feature vector of three scenes was constructed, including forest images without fire, forest images with fire, and forest images with fire-like interference. The existence of forest fires can be recognized based on the database via a support vector machine (SVM). The results showed that the method’s recognition rate for forest fires reached 93.15% and that it had a strong robustness with respect to distinguishing fire-like interference, which provides a more effective scheme for forest fire recognition. Numéro de notice : A2022-834 Affiliation des auteurs : non IGN Thématique : FORET/IMAGERIE Nature : Article DOI : 10.3390/f13101719 Date de publication en ligne : 18/10/2022 En ligne : https://doi.org/10.3390/f13101719 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=102030
in Forests > vol 13 n° 10 (October 2022) . - n° 1719[article]