Détail de l'auteur
Auteur Qiulai Wang |
Documents disponibles écrits par cet auteur (1)
Ajouter le résultat dans votre panier Affiner la recherche Interroger des sources externes
Novel algorithm based on geometric characteristics for tree branch skeleton extraction from LiDAR point cloud / Jie Yang in Forests, vol 13 n° 10 (October 2022)
[article]
Titre : Novel algorithm based on geometric characteristics for tree branch skeleton extraction from LiDAR point cloud Type de document : Article/Communication Auteurs : Jie Yang, Auteur ; Xiaorong Wen, Auteur ; Qiulai Wang, Auteur ; et al., Auteur Année de publication : 2022 Article en page(s) : n° 1534 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Lasergrammétrie
[Termes IGN] analyse de groupement
[Termes IGN] branche (arbre)
[Termes IGN] C++
[Termes IGN] Chine
[Termes IGN] données lidar
[Termes IGN] extraction de traits caractéristiques
[Termes IGN] itération
[Termes IGN] modélisation de la forêt
[Termes IGN] semis de points
[Termes IGN] squelettisationRésumé : (auteur) More accurate tree models, such as branch skeleton, are needed to acquire forest inventory data. Currently available algorithms for constructing a branch skeleton from a LiDAR point cloud have low accuracy with problems such as irrational connection near trunk bifurcation, excessive central deviation and topological errors. Using the C++ and PCL library, a novel algorithm of the incomplete simulation of tree transmitting water and nutrients (ISTTWN), based on geometric characteristics for tree branch skeleton extraction, was developed in this research. The algorithm is an incomplete simulation of tree transmitting water and nutrients. Improvements were made to improve the time and memory consumption. The result show that the ISTTWN algorithm without any improvements is quite time consuming but has consecutive output. After improvement with iteration, the process is faster and has more detailed output. Breakpoint connection is added to recover continuity. The ISTTWN algorithm with improvements can produce a more accurate skeleton and cost less time than a previous algorithm. The superiority and effectiveness of the method are demonstrated, which provides a reference for the subsequent study of tree modeling and a prospect of application in other fields, such as virtual reality, computer games and movie scenes. Numéro de notice : A2022-835 Affiliation des auteurs : non IGN Thématique : FORET/IMAGERIE Nature : Article DOI : 10.3390/f13101534 Date de publication en ligne : 17/09/2022 En ligne : https://doi.org/10.3390/f13101534 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=102032
in Forests > vol 13 n° 10 (October 2022) . - n° 1534[article]