Détail de l'auteur
Auteur Isabelle Debled-Rennesson |
Documents disponibles écrits par cet auteur (1)
Ajouter le résultat dans votre panier Affiner la recherche Interroger des sources externes
Éléments pour l'analyse et le traitement d'images : application à l'estimation de la qualité du bois / Rémy Decelle (2022)
Titre : Éléments pour l'analyse et le traitement d'images : application à l'estimation de la qualité du bois Type de document : Thèse/HDR Auteurs : Rémy Decelle, Auteur ; Isabelle Debled-Rennesson, Auteur ; Fleur Longuetaud, Auteur Editeur : Nancy, Metz : Université de Lorraine Année de publication : 2022 Importance : 214 p. Format : 21 x 30 cm Note générale : bibliographie
Thèse présentée pour l'obtention du Doctorat de l'Université de Lorraine, Mention InformatiqueLangues : Français (fre) Descripteur : [Vedettes matières IGN] Traitement d'image optique
[Termes IGN] aubier
[Termes IGN] cerne
[Termes IGN] classification par nuées dynamiques
[Termes IGN] classification par réseau neuronal convolutif
[Termes IGN] duramen
[Termes IGN] filtre
[Termes IGN] grume
[Termes IGN] morphologie mathématique
[Termes IGN] niveau de gris (image)
[Termes IGN] optimisation par colonie de fourmis
[Termes IGN] qualité du bois
[Termes IGN] représentation discrète
[Termes IGN] segmentation d'image
[Termes IGN] seuillageIndex. décimale : THESE Thèses et HDR Résumé : (auteur) Dans le contexte du changement climatique et de son atténuation, du développement de la bioéconomie circulaire, et d'une pression accrue qui en découle sur la ressource en bois, un des axes de recherche prioritaire est l'optimisation de la transformation de cette ressource qui peut se faire à différents niveaux. L'objectif ici est d'extraire des informations sur la qualité du bois à partir de l'analyse de sections transversales du grumes ou billons de bois en forêt ou en scierie. Pour estimer cette qualité, plusieurs caractéristiques visibles peuvent être extraites : zones d'aubier et de duramen, position de la moelle et du centre géométrique, le nombre de cernes et leur largeur. Dans un premier temps, nous nous intéressons à la segmentation de la grume dans l'image. Cette segmentation rend plus simple l'analyse des autres caractéristiques et permet de localiser le centre géométrique. Pour cela, nous proposons plusieurs approches. D'abord, des méthodes classiques issues du traitement d'images sont abordées, comme la méthode des K-Means ou les contours actifs. Nous utilisons également des réseaux de neurones convolutifs. Nous montrons l'avantage des réseaux de neurones par rapport à ces deux autres méthodes. La deuxième caractéristique estimée est la zone de duramen (zone centrale plus colorée). Nous proposons une nouvelle couche d'attention pour les réseaux de neurones utilisant la morphologie mathématique moins souvent utilisée. Les couches d'attention ont permis aux réseaux d'être plus performants en se focalisant sur les informations les plus pertinentes. Dans notre cadre, l'objectif de cette couche est double : réduire la quantité de paramètres et augmenter les performances. Notre couche d'attention montre de meilleures performances par rapport à d'autres couches d'attention. Dans un troisième temps, nous proposons d'analyser les cernes. Notre méthode est en trois grandes étapes. D'abord, un lissage directionnel pour rehausser les cernes (tout en gardant au mieux les contours) et réduire à la fois la texture intracernes et les marques de sciage. Puis, un seuillage adaptatif pour déterminer les zones de cernes potentiels. Enfin, un deuxième seuillage afin d'avoir les limites de cernes. À partir de la segmentation finale, l'analyse des cernes (nombre, largeur moyenne, etc.) est rendue possible. Enfin, l'estimation de la position de la moelle est abordée. Nous proposons une nouvelle approche originale basée sur l'algorithme des colonies de fourmis pour estimer la position de la moelle. L'utilisation de cet algorithme permet de s'abstraire d'une étape habituelle, à savoir l'accumulation des normales aux tangentes des cernes. Notre méthode montre de nombreux avantages par rapport aux approches de l'état de l'art, réseaux de neurones inclus. Dans une dernière partie, nous présenterons un travail en géométrie discrète : un filtre directionnel. Il estime les segments les plus longs en tout point d'un ensemble connexe. La présentation de cet outil est fait par le biais d'un filtre. En appliquant ce filtre, nous pouvons estimer des caractéristiques géométriques à l'échelle locale. Cet outil a pour objectif d'être appliqué aux cernes. Note de contenu : Introduction
1- Techniques de segmentation
2- Segmentation : les applications aux bois
3- Nouvelles approches du traitement d’images appliquées au bois
4- Détection de la moelle dans l’image
5- Filtre directionnel discret
6- ConclusionNuméro de notice : 24061 Affiliation des auteurs : non IGN Thématique : FORET/IMAGERIE Nature : Thèse française Note de thèse : Thèse de Doctorat : Informatique : Université de Lorraine : 2022 Organisme de stage : Laboratoire LORIA DOI : sans En ligne : https://hal.univ-lorraine.fr/tel-03794911/document Format de la ressource électronique : URL Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=102036