Détail de l'auteur
Auteur Dedong Yang |
Documents disponibles écrits par cet auteur (1)
Ajouter le résultat dans votre panier Affiner la recherche Interroger des sources externes
3D target detection using dual domain attention and SIFT operator in indoor scenes / Hanshuo Zhao in The Visual Computer, vol 38 n° 11 (November 2022)
[article]
Titre : 3D target detection using dual domain attention and SIFT operator in indoor scenes Type de document : Article/Communication Auteurs : Hanshuo Zhao, Auteur ; Dedong Yang, Auteur ; Jiankang Yu, Auteur Année de publication : 2022 Article en page(s) : pp3765 - 3774 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Traitement d'image optique
[Termes IGN] attention (apprentissage automatique)
[Termes IGN] détection d'objet
[Termes IGN] détection de cible
[Termes IGN] jeu de données
[Termes IGN] objet 3D
[Termes IGN] scène intérieure
[Termes IGN] SIFT (algorithme)Résumé : (auteur) In a large number of real-life scenes and practical applications, 3D object detection is playing an increasingly important role. We need to estimate the position and direction of the 3D object in the real scene to complete the 3D object detection task. In this paper, we propose a new network architecture based on VoteNet to detect 3D point cloud targets. On the one hand, we use channel and spatial dual-domain attention module to enhance the features of the object to be detected while suppressing other useless features. On the other hand, the SIFT operator has scale invariance and the ability to resist occlusion and background interference. The PointSIFT module we use can capture information in different directions of point cloud in space, and is robust to shapes of different proportions, so as to better detect objects that are partially occluded. Our method is evaluated on the SUN-RGBD and ScanNet datasets of indoor scenes. The experimental results show that our method has better performance than VoteNet. Numéro de notice : A2022-840 Affiliation des auteurs : non IGN Thématique : IMAGERIE Nature : Article DOI : 10.1007/s00371-021-02217-z Date de publication en ligne : 28/06/2021 En ligne : https://doi.org/10.1007/s00371-021-02217-z Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=102042
in The Visual Computer > vol 38 n° 11 (November 2022) . - pp3765 - 3774[article]