Détail de l'auteur
Auteur Michele Calvello |
Documents disponibles écrits par cet auteur (1)
Ajouter le résultat dans votre panier Affiner la recherche Interroger des sources externes
Machine learning and landslide studies: recent advances and applications / Faraz S. Tehrani in Natural Hazards, vol 114 n° 2 (November 2022)
[article]
Titre : Machine learning and landslide studies: recent advances and applications Type de document : Article/Communication Auteurs : Faraz S. Tehrani, Auteur ; Michele Calvello, Auteur ; Zongqiang Liu, Auteur ; et al., Auteur Année de publication : 2022 Article en page(s) : pp 1197 - 1245 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Applications de télédétection
[Termes IGN] analyse d'image orientée objet
[Termes IGN] analyse spatiale
[Termes IGN] apprentissage automatique
[Termes IGN] cartographie des risques
[Termes IGN] classification par réseau neuronal convolutif
[Termes IGN] effondrement de terrain
[Termes IGN] image Sentinel-MSI
[Termes IGN] réseau neuronal artificiel
[Termes IGN] simulation spatialeRésumé : (auteur) Upon the introduction of machine learning (ML) and its variants, in the form that we know today, to the landslide community, many studies have been carried out to explore the usefulness of ML in landslide research and to look at some classic landslide problems from an ML point of view. ML techniques, including deep learning methods, are becoming popular to model complex landslide problems and are starting to demonstrate promising predictive performance compared to conventional methods. Almost all the studies published in the literature in recent years belong to one of the following three broad categories: landslide detection and mapping, landslide spatial forecasting in the form of susceptibility mapping, and landslide temporal forecasting. In this paper, we present a brief overview of ML techniques, provide a general summary of the landslide studies conducted, in recent years, in the three above-mentioned categories, and make an attempt to critically evaluate the use of ML methods to model landslide processes. The paper also provides suggestions for future use of these powerful data-driven techniques in landslide studies. Numéro de notice : A2022-841 Affiliation des auteurs : non IGN Thématique : GEOMATIQUE/IMAGERIE Nature : Article DOI : 10.1007/s11069-022-05423-7 Date de publication en ligne : 20/06/2022 En ligne : https://doi.org/10.1007/s11069-022-05423-7 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=102051
in Natural Hazards > vol 114 n° 2 (November 2022) . - pp 1197 - 1245[article]