Détail de l'auteur
Auteur Medria Shekar Rani |
Documents disponibles écrits par cet auteur (1)
Ajouter le résultat dans votre panier Affiner la recherche Interroger des sources externes
Updating and backdating analyses for mitigating uncertainties in land change modeling: a case study of the Ci Kapundung upper water catchment area, Java Island, Indonesia / Medria Shekar Rani in International journal of geographical information science IJGIS, vol 36 n° 12 (December 2022)
[article]
Titre : Updating and backdating analyses for mitigating uncertainties in land change modeling: a case study of the Ci Kapundung upper water catchment area, Java Island, Indonesia Type de document : Article/Communication Auteurs : Medria Shekar Rani, Auteur ; Ross Cameron, Auteur ; Olaf Schrott, Auteur ; et al., Auteur Année de publication : 2022 Article en page(s) : pp 2549 - 2562 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Analyse spatiale
[Termes IGN] automate cellulaire
[Termes IGN] bassin hydrographique
[Termes IGN] carte thématique
[Termes IGN] changement d'occupation du sol
[Termes IGN] Java (île de)
[Termes IGN] mise à jour
[Termes IGN] modèle de Markov
[Termes IGN] modélisation spatiale
[Termes IGN] Perceptron multicoucheRésumé : (auteur) In developing countries, data gaps are common and lead to uncertainties in land cover change analysis. This study demonstrates how to mitigate uncertainties in modeling land change in the Ci Kapundung upper water catchment area by comparing the outcomes of two simulation phases. A conventional cellular automata (CA)–Markov model was complemented with a multilayer perceptron (MLP) to project future land cover maps in the study area. The CA–Markov–MLP model results in high uncertainties in forested sites where a data gap is apparent in the input data (land cover maps and driver variables) and parameters. The results show that the model accuracy is improved from 47.90% in the first phase to 81.36% in the second phase. Both first and second phases integrate six demographic–economic and environmental drivers in the modeling, but the second phase also incorporates an updating and backdating analysis to revise the base-maps. This study suggests that uncertainties can be mitigated by linking such base-map revision process with the updating and backdating analyses using remote sensing datasets retrieved at different times. Numéro de notice : A2022-845 Affiliation des auteurs : non IGN Thématique : GEOMATIQUE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.1080/13658816.2022.2103820 Date de publication en ligne : 28/07/2022 En ligne : https://doi.org/10.1080/13658816.2022.2103820 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=102076
in International journal of geographical information science IJGIS > vol 36 n° 12 (December 2022) . - pp 2549 - 2562[article]