Détail de l'auteur
Auteur Afiz Hulusi Acar |
Documents disponibles écrits par cet auteur (1)
Ajouter le résultat dans votre panier Affiner la recherche Interroger des sources externes
Evaluation of automatic prediction of small horizontal curve attributes of mountain roads in GIS environments / Sercan Gülci in ISPRS International journal of geo-information, vol 11 n° 11 (November 2022)
[article]
Titre : Evaluation of automatic prediction of small horizontal curve attributes of mountain roads in GIS environments Type de document : Article/Communication Auteurs : Sercan Gülci, Auteur ; Afiz Hulusi Acar, Auteur ; Abdullah E. Akay, Auteur ; et al., Auteur Année de publication : 2022 Article en page(s) : n° 560 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Termes IGN] algorithme de Douglas-Peucker
[Termes IGN] attribut géomètrique
[Termes IGN] coefficient de corrélation
[Termes IGN] courbe
[Termes IGN] matrice de confusion
[Termes IGN] montagne
[Termes IGN] réseau routier
[Termes IGN] système d'information géographique
[Termes IGN] tracé routier
[Termes IGN] Turquie
[Vedettes matières IGN] GénéralisationRésumé : (auteur) Road curve attributes can be determined by using Geographic Information System (GIS) to be used in road vehicle traffic safety and planning studies. This study involves analyzing the GIS-based estimation accuracy in the length, radius and the number of small horizontal road curves on a two-lane rural road and a forest road. The prediction success of horizontal curve attributes was investigated using digitized raw and generalized/simplified road segments. Two different roads were examined, involving 20 test groups and two control groups, using 22 datasets obtained from digitized and surveyed roads based on satellite imagery, GIS estimates, and field measurements. Confusion matrix tables were also used to evaluate the prediction accuracy of horizontal curve geometry. F-score, Mathews Correlation Coefficient, Bookmaker Informedness and Balanced Accuracy were used to investigate the performance of test groups. The Kruskal–Wallis test was used to analyze the statistical relationships between the data. Compared to the Bezier generalization algorithm, the Douglas–Peucker algorithm showed the most accurate horizontal curve predictions at generalization tolerances of 0.8 m and 1 m. The results show that the generalization tolerance level contributes to the prediction accuracy of the number, curve radius, and length of the horizontal curves, which vary with the tolerance value. Thus, this study underlined the importance of calculating generalizations and tolerances following a manual road digitization. Numéro de notice : A2022-847 Affiliation des auteurs : non IGN Thématique : GEOMATIQUE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.3390/ijgi11110560 Date de publication en ligne : 09/11/2022 En ligne : https://doi.org/10.3390/ijgi11110560 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=102083
in ISPRS International journal of geo-information > vol 11 n° 11 (November 2022) . - n° 560[article]