Détail de l'auteur
Auteur Fabien Moutarde |
Documents disponibles écrits par cet auteur (1)
Ajouter le résultat dans votre panier Affiner la recherche Interroger des sources externes
Analysis of pedestrian movements and gestures using an on-board camera to predict their intentions / Joseph Gesnouin (2022)
Titre : Analysis of pedestrian movements and gestures using an on-board camera to predict their intentions Titre original : Analyse des mouvements et gestes des piétons via caméra embarquée pour la prédiction de leurs intentions Type de document : Thèse/HDR Auteurs : Joseph Gesnouin, Auteur ; Fabien Moutarde, Directeur de thèse Editeur : Paris : Université Paris Sciences et Lettres Année de publication : 2022 Importance : 171 p. Format : 21 x 30 cm Note générale : bibliographie
Thèse de doctorat de l'Université Paris Sciences et Lettres, Préparée à MINES ParisTech, Spécialité
Informatique temps réel, robotique et automatiqueLangues : Anglais (eng) Descripteur : [Vedettes matières IGN] Intelligence artificielle
[Termes IGN] apprentissage profond
[Termes IGN] attention (apprentissage automatique)
[Termes IGN] classification par réseau neuronal convolutif
[Termes IGN] classification par réseau neuronal récurrent
[Termes IGN] estimation de pose
[Termes IGN] image RVB
[Termes IGN] instrument embarqué
[Termes IGN] navigation autonome
[Termes IGN] piéton
[Termes IGN] reconnaissance de gestes
[Termes IGN] réseau neuronal de graphes
[Termes IGN] squelettisation
[Termes IGN] trajectoire (véhicule non spatial)
[Termes IGN] vision par ordinateurIndex. décimale : THESE Thèses et HDR Résumé : (auteur) The autonomous vehicle (AV) is a major challenge for the mobility of tomorrow. Progress is being made every day to achieve it; however, many problems remain to be solved to achieve a safe outcome for the most vulnerable road users (VRUs). One of the major challenge faced by AVs is the ability to efficiently drive in urban environments. Such a task requires interactions between autonomous vehicles and VRUs to resolve traffic ambiguities. In order to interact with VRUs, AVs must be able to understand their intentions and predict their incoming actions. In this dissertation, our work revolves around machine learning technology as a way to understand and predict human behaviour from visual signals and more specifically pose kinematics. Our goal is to propose an assistance system to the AV that is lightweight, scene-agnostic that could be easily implemented in any embedded devices with real-time constraints. Firstly, in the gesture and action recognition domain, we study and introduce different representations for pose kinematics, based on deep learning models as a way to efficiently leverage their spatial and temporal components while staying in an euclidean grid-space. Secondly, in the autonomous driving domain, we show that it is possible to link the posture, the walking attitude and the future behaviours of the protagonists of a scene without using the contextual information of the scene (zebra crossing, traffic light...). This allowed us to divide by a factor of 20 the inference speed of existing approaches for pedestrian intention prediction while keeping the same prediction robustness. Finally, we assess the generalization capabilities of pedestrian crossing predictors and show that the classical train-test sets evaluation for pedestrian crossing prediction, i.e., models being trained and tested on the same dataset, is not sufficient to efficiently compare nor conclude anything about their applicability in a real-world scenario. To make the research field more sustainable and representative of the real advances to come. We propose new protocols and metrics based on uncertainty estimates under domain-shift in order to reach the end-goal of pedestrian crossing behavior predictors: vehicle implementation. Note de contenu : 1- Introduction
2- Human activity recognition with pose-driven deep learning models
3- From action recognition to pedestrian discrete intention prediction
4- Assessing the generalization of pedestrian crossing predictors
5- ConclusionNuméro de notice : 24066 Affiliation des auteurs : non IGN Thématique : INFORMATIQUE Nature : Thèse française Note de thèse : Thèse de Doctorat : Informatique temps réel, robotique et automatique : Paris Sciences et Lettres : 2022 DOI : sans En ligne : https://tel.hal.science/tel-03813520 Format de la ressource électronique : URL Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=102091