Détail de l'auteur
Auteur Shihua Li |
Documents disponibles écrits par cet auteur (1)
Ajouter le résultat dans votre panier Affiner la recherche Interroger des sources externes
Graph-based leaf–wood separation method for individual trees using terrestrial lidar point clouds / Zhilin Tian in IEEE Transactions on geoscience and remote sensing, vol 60 n° 11 (November 2022)
[article]
Titre : Graph-based leaf–wood separation method for individual trees using terrestrial lidar point clouds Type de document : Article/Communication Auteurs : Zhilin Tian, Auteur ; Shihua Li, Auteur Année de publication : 2022 Article en page(s) : n° 5705111 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Lasergrammétrie
[Termes IGN] bois
[Termes IGN] branche (arbre)
[Termes IGN] chemin le plus court, algorithme du
[Termes IGN] données lidar
[Termes IGN] échantillonnage de données
[Termes IGN] extraction de traits caractéristiques
[Termes IGN] feuille (végétation)
[Termes IGN] graphe
[Termes IGN] Python (langage de programmation)
[Termes IGN] segmentation
[Termes IGN] semis de pointsRésumé : (auteur) Terrestrial light detection and ranging (lidar) is capable of resolving trees at the branch/leaf level with accurate and dense point clouds. The separation of leaf and wood components is a prerequisite for the estimation of branch/leaf-scale biophysical properties and realistic tree model reconstruction. Most existing methods have been tested on trees with similar structures; their robustness for trees of different species and sizes remains relatively unexplored. This study proposed a new graph-based leaf–wood separation (GBS) method for individual trees purely using the xyz -information of the point cloud. The GBS method fully utilized the shortest path-based features, as the shortest path can effectively reflect the structures for trees of different species and sizes. Ten types of tree data—covering tropical, temperate, and boreal species—with heights ranging from 5.4 to 43.7 m, were used to test the method performance. The mean accuracy and kappa coefficient at the point level were 94% and 0.78, respectively, and our method outperformed two other state-of-the-art methods. Through further analysis and testing, the GBS method exhibited a strong ability for detecting small and leaf-surrounded branches, and was also sufficiently robust in terms of data subsampling. Our research further demonstrated the potential of the shortest path-based features in leaf–wood separation. The entire framework was provided for use as an open-source Python package, along with our labeled validation data. Numéro de notice : A2022-853 Affiliation des auteurs : non IGN Thématique : FORET/IMAGERIE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.1109/TGRS.2022.3218603 Date de publication en ligne : 01/11/2022 En ligne : https://doi.org/10.1109/TGRS.2022.3218603 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=102099
in IEEE Transactions on geoscience and remote sensing > vol 60 n° 11 (November 2022) . - n° 5705111[article]