Détail de l'auteur
Auteur Shuangshuang Qiao |
Documents disponibles écrits par cet auteur (1)
Ajouter le résultat dans votre panier Affiner la recherche Interroger des sources externes
Establishing a GIS-based evaluation method considering spatial heterogeneity for debris flow susceptibility mapping at the regional scale / Shengwu Qin in Natural Hazards, vol 114 n° 3 (December 2022)
[article]
Titre : Establishing a GIS-based evaluation method considering spatial heterogeneity for debris flow susceptibility mapping at the regional scale Type de document : Article/Communication Auteurs : Shengwu Qin, Auteur ; Shuangshuang Qiao, Auteur ; Jingyu Yao, Auteur ; et al., Auteur Année de publication : 2022 Article en page(s) : pp 2709 - 2738 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Applications SIG
[Termes IGN] aléa
[Termes IGN] analyse de sensibilité
[Termes IGN] cartographie des risques
[Termes IGN] Chine
[Termes IGN] classification par réseau neuronal convolutif
[Termes IGN] classification par séparateurs à vaste marge
[Termes IGN] éboulement
[Termes IGN] hétérogénéité spatiale
[Termes IGN] prévention des risquesRésumé : (auteur) Susceptibility mapping is an effective means of preventing debris flow disasters. However, previous studies have failed to solve spatial heterogeneity well, especially at the regional scale. The main objective of this study is to solve the spatial heterogeneity of regional-scale debris flow susceptibility (DFS) mapping by establishing a geographic information system (GIS)-based processing framework. The framework was realized by integrating the determination factor (DFactor) model with machine learning models. The DFactor model established different combinations of evaluation factors in each local region and clarified the differing contributions of influencing factors to DFS. To test the feasibility of the framework, the support vector machine (SVM) and two-dimensional convolutional neural network (CNN) were integrated with the DFactor model (DFactor-SVM and DFactor-CNN) to evaluate DFS in Jilin Province, China. The individual models (SVM and CNN) were also used to map the DFS for comparison with the integrated models. For debris flow modeling, 868 debris flow samples were collected and randomly divided into two datasets: 70% of the samples were used for training and the result was used for verification. The results of the receiver operating characteristic curve showed that the integrated models performed better. The DFactor-CNN model had the highest predictive accuracy, followed by the DFactor-SVM, CNN and SVM models. In general, the GIS-based processing framework maximizes the contribution of the influencing factors to debris flows and enhances the prediction ability of models. Furthermore, it provides a reliable means to predict debris flows at the regional scale. Numéro de notice : A2022-854 Affiliation des auteurs : non IGN Thématique : GEOMATIQUE Nature : Article DOI : 10.1007/s11069-022-05487-5 Date de publication en ligne : 06/08/2022 En ligne : https://doi.org/10.1007/s11069-022-05487-5 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=102101
in Natural Hazards > vol 114 n° 3 (December 2022) . - pp 2709 - 2738[article]