Détail de l'auteur
Auteur Kuowei Xiao |
Documents disponibles écrits par cet auteur (1)
Ajouter le résultat dans votre panier Affiner la recherche Interroger des sources externes
Change alignment-based image transformation for unsupervised heterogeneous change detection / Kuowei Xiao in Remote sensing, vol 14 n° 21 (November-1 2022)
[article]
Titre : Change alignment-based image transformation for unsupervised heterogeneous change detection Type de document : Article/Communication Auteurs : Kuowei Xiao, Auteur ; Yuli Sun, Auteur ; Lin Lei, Auteur Année de publication : 2022 Article en page(s) : n° 5622 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Traitement d'image optique
[Termes IGN] alignement
[Termes IGN] classification non dirigée
[Termes IGN] classification par réseau neuronal convolutif
[Termes IGN] décomposition d'image
[Termes IGN] détection de changement
[Termes IGN] données hétérogènes
[Termes IGN] masqueRésumé : (auteur) Change detection (CD) with heterogeneous images is currently attracting extensive attention in remote sensing. In order to make heterogeneous images comparable, the image transformation methods transform one image into the domain of another image, which can simultaneously obtain a forward difference map (FDM) and backward difference map (BDM). However, previous methods only fuse the FDM and BDM in the post-processing stage, which cannot fundamentally improve the performance of CD. In this paper, a change alignment-based change detection (CACD) framework for unsupervised heterogeneous CD is proposed to deeply utilize the complementary information of the FDM and BDM in the image transformation process, which enhances the effect of domain transformation, thus improving CD performance. To reduce the dependence of the transformation network on labeled samples, we propose a graph structure-based strategy of generating prior masks to guide the network, which can reduce the influence of changing regions on the transformation network in an unsupervised way. More importantly, based on the fact that the FDM and BDM are representing the same change event, we perform change alignment during the image transformation, which can enhance the image transformation effect and enable FDM and BDM to effectively indicate the real change region. Comparative experiments are conducted with six state-of-the-art methods on five heterogeneous CD datasets, showing that the proposed CACD achieves the best performance with an average overall accuracy (OA) of 95.9% on different datasets and at least 6.8% improvement in the kappa coefficient. Numéro de notice : A2022-855 Affiliation des auteurs : non IGN Thématique : IMAGERIE Nature : Article DOI : 10.3390/rs14215622 Date de publication en ligne : 07/11/2022 En ligne : https://doi.org/10.3390/rs14215622 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=102103
in Remote sensing > vol 14 n° 21 (November-1 2022) . - n° 5622[article]