Détail de l'auteur
Auteur Hussein Abdelwahab Mossa |
Documents disponibles écrits par cet auteur (1)
Ajouter le résultat dans votre panier Affiner la recherche Interroger des sources externes
Incorporation of digital elevation model, normalized difference vegetation index, and Landsat-8 data for land use land cover mapping / Jwan Al-Doski in Photogrammetric Engineering & Remote Sensing, PERS, vol 88 n° 8 (August 2022)
[article]
Titre : Incorporation of digital elevation model, normalized difference vegetation index, and Landsat-8 data for land use land cover mapping Type de document : Article/Communication Auteurs : Jwan Al-Doski, Auteur ; Faez M. Hassan, Auteur ; Hussein Abdelwahab Mossa, Auteur ; Aus A. Najim, Auteur Année de publication : 2022 Article en page(s) : pp 507 - 516 Note générale : Bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Traitement d'image optique
[Termes IGN] carte d'occupation du sol
[Termes IGN] carte d'utilisation du sol
[Termes IGN] classification par séparateurs à vaste marge
[Termes IGN] données auxiliaires
[Termes IGN] image Landsat-8
[Termes IGN] Malaisie
[Termes IGN] MNS ASTER
[Termes IGN] modèle numérique de surface
[Termes IGN] Normalized Difference Vegetation Index
[Termes IGN] ombre
[Termes IGN] précision de la classificationRésumé : (Auteur) Ancillary data are crucial in land use land cover (LULC) mapping process. This study goal is to investigate if adding Normalized Difference Vegetation Index (NDVI) and digital elevation model (DEM) data as ancillary data to the Landsat-8 spectral imagery (acquired on 14 April 2016) in the support vector machine (SVM ) classification process improves LULC mapping accuracy in GuaMusang, Malaysia. ENVI software was used to preprocess a single Landsat-8 image, convert it to reflectance, and calculate NDVI. ASTER-GDEM data were used to generate the DEM. The logical channel method was used to combine NDVI and DEM with Landsat-8 bands and limit the impact of shadows during SVM classification. The SVM accuracy was tested and evaluated on ancillary data and Landsat-8 spectral-based collection. The results revealed that the user's accuracy and producer's accuracy improved by 15.1% and 2.1%, for primary forest and by 17.93% and 28.86% for secondary forest, respectively. The classification reliability of the majority of LULC categories has increased significantly. Compared to SVM spectral-based set, the overall accuracy and kappa coefficient of the SVM ancillary-based set improved by 8.77% and 0.12, respectively. In conclusion, this article demonstrated that integrating DEM and NDVI data improves Landsat-8 image classification precision. Numéro de notice : A2022-805 Affiliation des auteurs : non IGN Thématique : FORET/IMAGERIE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.14358/PERS.21-00082R2 Date de publication en ligne : 01/08/2022 En ligne : https://doi.org/10.14358/PERS.21-00082R2 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=102132
in Photogrammetric Engineering & Remote Sensing, PERS > vol 88 n° 8 (August 2022) . - pp 507 - 516[article]Exemplaires(1)
Code-barres Cote Support Localisation Section Disponibilité 105-2022081 SL Revue Centre de documentation Revues en salle Disponible