Détail de l'auteur
Auteur Liangyun Liu |
Documents disponibles écrits par cet auteur (1)
Ajouter le résultat dans votre panier Affiner la recherche Interroger des sources externes
A simple approach to enhance the TROPOMI solar-induced chlorophyll fluorescence product by combining with canopy reflected radiation at near-infrared band / Xinjie Liu in Remote sensing of environment, vol 284 (January 2023)
[article]
Titre : A simple approach to enhance the TROPOMI solar-induced chlorophyll fluorescence product by combining with canopy reflected radiation at near-infrared band Type de document : Article/Communication Auteurs : Xinjie Liu, Auteur ; Liangyun Liu, Auteur ; Cédric Bacour, Auteur ; et al., Auteur Année de publication : 2023 Article en page(s) : n° 113341 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Applications de télédétection
[Termes IGN] canopée
[Termes IGN] chlorophylle
[Termes IGN] fluorescence
[Termes IGN] image Sentinel-5P-TROPOMI
[Termes IGN] image Terra-MODIS
[Termes IGN] production primaire brute
[Termes IGN] rayonnement proche infrarouge
[Termes IGN] réflectance de surface
[Termes IGN] réflectance végétaleRésumé : (auteur) Satellite-based data of solar-induced chlorophyll fluorescence (SIF) and the near-infrared radiation reflected by vegetation (NIRvP) are being increasingly used for the estimation of vegetation gross primary product (GPP) at the global scale. Although SIF contains more physiological information than NIRvP, NIRvP can have higher data quality and spatio-temporal resolution. Therefore, the two variables can be considered complementary for GPP monitoring. Here, we propose a simple framework to combine SIF and NIRvP data from different data sources to generate an enhanced SIF product (eSIF). The original SIF data comes from the TROPOMI instrument onboard the Sentinel-5P mission, whereas NIRvP data are derived from MODIS spectral reflectance and ERA5 reanalysis data. The resulting eSIF product has a spatial resolution of 0.05° and a temporal resolution of 8 days, as well as a higher signal-to-noise ratio and a lower angular dependency than the original TROPOMI SIF data. Our results demonstrate that eSIF has similar spatial patterns to the original SIF but is more spatially continuous and less noisy. Comparisons with the FLUXCOM global GPP product show that eSIF has a more universal relationship with GPP than NIRvP for different grass/crop plant functional types (the coefficients of variation are 18.9% for slopes of GPP to eSIF and 27.3% for slopes of GPP to NIRvP), but NIRvP outperforms eSIF for tracking GPP for forest PFTs exclude BoENF. Moreover, eSIF is able to better track the seasonal variations in GPP related to environmental stresses. This study highlights that our methodology based on the combination of SIF and NIRvP is a promising approach for better monitoring of GPP. Numéro de notice : A2023-017 Affiliation des auteurs : non IGN Thématique : FORET/IMAGERIE Nature : Article DOI : 10.1016/j.rse.2022.113341 Date de publication en ligne : 07/11/2022 En ligne : https://doi.org/10.1016/j.rse.2022.113341 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=102151
in Remote sensing of environment > vol 284 (January 2023) . - n° 113341[article]