Détail de l'auteur
Auteur Xuefeng Guan |
Documents disponibles écrits par cet auteur (1)
Ajouter le résultat dans votre panier Affiner la recherche Interroger des sources externes
HGAT-VCA: Integrating high-order graph attention network with vector cellular automata for urban growth simulation / Xuefeng Guan in Computers, Environment and Urban Systems, vol 99 (January 2023)
[article]
Titre : HGAT-VCA: Integrating high-order graph attention network with vector cellular automata for urban growth simulation Type de document : Article/Communication Auteurs : Xuefeng Guan, Auteur ; Weiran Xing, Auteur ; Jingbo Li, Auteur ; et al., Auteur Année de publication : 2023 Article en page(s) : n° 101900 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Analyse spatiale
[Termes IGN] adjacence
[Termes IGN] attention (apprentissage automatique)
[Termes IGN] automate cellulaire
[Termes IGN] changement d'utilisation du sol
[Termes IGN] croissance urbaine
[Termes IGN] étalement urbain
[Termes IGN] hétérogénéité spatiale
[Termes IGN] modèle de simulation
[Termes IGN] Queensland (Australie)
[Termes IGN] réseau neuronal de graphes
[Termes IGN] voisinage (relation topologique)
[Termes IGN] zone tamponRésumé : (auteur) Since urban growth results from frequent spatial interaction between urban units, adequate representation of spatial interaction is important for urban growth modeling. Among urban growth models, vector-based cellular automata (VCA) excels at expressing spatial interaction with realistic entities, and has accordingly been used extensively in recent studies. However, two issues with VCA modeling still remain: 1) inefficient manual selection of interaction targets with various neighborhood configurations; 2) inaccurate quantification of interaction intensity due to ignorance of spatial heterogeneity in entity interaction. To address these two limitations, this study proposed a novel VCA model with high-order graph attention network (HGAT-VCA). In this model, a graph structure is first built from the topology adjacency relationship between cadastral parcels. In terms of the HGAT components, the original 1st-order parcel neighborhood is extended to high-order to capture the distant dependency, while graph attention is applied to quantify the heterogeneous interaction intensity between parcels. Finally, the conversion probability obtained by HGAT is integrated with VCA to simulate urban land use change. Land use data from the Moreton Bay Region in Queensland, Australia from 2005 to 2009 are selected to verify the proposed HGAT-VCA model. Experimental results illustrate that HGAT-VCA outperforms four classical CA models and achieves the highest simulation accuracy (e.g., the increase of FoM is about 40.7%). In addition, extensive neighborhood configuration experiments show that with HGAT only tuning discrete topological order can generate similar accuracy results compared with the repetitive buffer-based neighborhood configuration, and this can significantly improve the calibration efficiency of VCA models. Numéro de notice : A2023-031 Affiliation des auteurs : non IGN Thématique : GEOMATIQUE Nature : Article DOI : 10.1016/j.compenvurbsys.2022.101900 Date de publication en ligne : 19/10/2022 En ligne : https://doi.org/10.1016/j.compenvurbsys.2022.101900 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=102163
in Computers, Environment and Urban Systems > vol 99 (January 2023) . - n° 101900[article]