Détail de l'auteur
Auteur Rasit Ulug |
Documents disponibles écrits par cet auteur (1)
Ajouter le résultat dans votre panier Affiner la recherche Interroger des sources externes
A new data-adaptive network design methodology based on the k-means clustering and modified ISODATA algorithm for regional gravity field modeling via spherical radial basis functions / Rasit Ulug in Journal of geodesy, vol 96 n° 12 (December 2022)
[article]
Titre : A new data-adaptive network design methodology based on the k-means clustering and modified ISODATA algorithm for regional gravity field modeling via spherical radial basis functions Type de document : Article/Communication Auteurs : Rasit Ulug, Auteur ; Mahmut Onur Karslıoglu, Auteur Année de publication : 2022 Article en page(s) : n° 91 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Géodésie physique
[Termes IGN] analyse de groupement
[Termes IGN] Auvergne
[Termes IGN] centroïde
[Termes IGN] champ de pesanteur local
[Termes IGN] champ de pesanteur terrestre
[Termes IGN] classification barycentrique
[Termes IGN] classification ISODATA
[Termes IGN] Colorado (Etats-Unis)
[Termes IGN] fonction de base radiale
[Termes IGN] largeur de bande
[Termes IGN] modèle de géopotentiel local
[Termes IGN] modèle numérique de terrainRésumé : (auteur) In this study, a new data-adaptive network design methodology called k-SRBF is presented for the spherical radial basis functions (SRBFs) in regional gravity field modeling. In this methodology, the cluster centers (centroids) obtained by the k-means clustering algorithm are post-processed to construct a network of SRBFs by replacing the centroids with the SRBFs. The post-processing procedure is inspired by the heuristic method, Iterative Self-Organizing Data Analysis Technique (ISODATA), which splits clusters within the user-defined criteria to avoid over- and under-parameterization. These criteria are the minimum spherical distance between the centroids and the minimum number of samples for each cluster. The bandwidth (depth) of each SRBF is determined using the generalized cross-validation (GCV) technique in which only the observations within the radius of impact area (RIA) are used. The numerical tests are carried out with real and simulated data sets to investigate the effect of the user-defined criteria on the network design. Different bandwidth limits are also examined, and the appropriate lower and upper bandwidth limits are chosen based on the empirical signal covariance function and user-defined criteria. Also, additional tests are performed to verify the performance of the proposed methodology in combining different types of observations, such as terrestrial and airborne data available in Colorado. The results reveal that k-SRBF is an effective methodology to establish a data-adaptive network for SRBFs. Moreover, the proposed methodology improves the condition number of normal equation matrix so that the least-squares procedure can be applied without regularization considering the user-defined criteria and bandwidth limits. Numéro de notice : A2022-877 Affiliation des auteurs : non IGN Thématique : POSITIONNEMENT Nature : Article DOI : 10.1007/s00190-022-01681-2 Date de publication en ligne : 22/11/2022 En ligne : https://doi.org/10.1007/s00190-022-01681-2 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=102190
in Journal of geodesy > vol 96 n° 12 (December 2022) . - n° 91[article]