Détail de l'auteur
Auteur Ali Ekincek |
Documents disponibles écrits par cet auteur (1)
Ajouter le résultat dans votre panier Affiner la recherche Interroger des sources externes
Sea surface temperature prediction model for the Black Sea by employing time-series satellite data: a machine learning approach / Hakan Oktay Aydınlı in Applied geomatics, vol 14 n° 4 (December 2022)
[article]
Titre : Sea surface temperature prediction model for the Black Sea by employing time-series satellite data: a machine learning approach Type de document : Article/Communication Auteurs : Hakan Oktay Aydınlı, Auteur ; Ali Ekincek, Auteur ; Mervegül Aykanat-Atay, Auteur ; et al., Auteur Année de publication : 2022 Article en page(s) : pp 669 - 678 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Applications de télédétection
[Termes IGN] analyse diachronique
[Termes IGN] apprentissage automatique
[Termes IGN] classification par réseau neuronal récurrent
[Termes IGN] détection de changement
[Termes IGN] données Copernicus
[Termes IGN] image Aqua-MODIS
[Termes IGN] méthode des moindres carrés
[Termes IGN] modèle de simulation
[Termes IGN] Noire, mer
[Termes IGN] optimisation (mathématiques)
[Termes IGN] série temporelle
[Termes IGN] température de surface de la merRésumé : (auteur) High temporal resolution remote sensing images provide continuous data about the marine environment, which is critical for gaining extensive knowledge about the aquatic environment and marine species. Sea surface temperature (SST) is one of the basic parameters that can be obtained with the help of remote sensing. Long-term alterations in the SST can affect the aquatic environment and marine species, such as the life expectancy of anchovies in the Black Sea. Forecasting the dynamics of SSTs is crucial for detecting and eliminating the SST-oriented impacts. The goal of the current study is to construct a predictive model to estimate the daily SST value for the mid-Black Sea using a machine learning approach by employing time-series satellite data from 2008 to 2021. Turkey’s mid-Black Sea coastal line, comprising Ordu, Samsun, and Sinop stations, was chosen as the study area. The SST predictive model was represented by applying the recurrent neural network (RNN) long- and short-term memory (LSTM). Adam stochastic optimization was used for validation, and the mean square error (MSE) for each location was found to be 0.914, 0.815, and 0.802, respectively. The findings indicate that our model is significantly promising for accurate and effective short- and midterm daily SST prediction. Numéro de notice : A2022-894 Affiliation des auteurs : non IGN Thématique : IMAGERIE Nature : Article DOI : 10.1007/s12518-022-00462-y Date de publication en ligne : 23/08/2022 En ligne : https://doi.org/10.1007/s12518-022-00462-y Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=102242
in Applied geomatics > vol 14 n° 4 (December 2022) . - pp 669 - 678[article]