Détail de l'auteur
Auteur Roberto Mecca |
Documents disponibles écrits par cet auteur (1)
Ajouter le résultat dans votre panier Affiner la recherche Interroger des sources externes
A CNN based approach for the point-light photometric stereo problem / Fotios Logothetis in International journal of computer vision, vol 131 n° 1 (January 2023)
[article]
Titre : A CNN based approach for the point-light photometric stereo problem Type de document : Article/Communication Auteurs : Fotios Logothetis, Auteur ; Roberto Mecca, Auteur ; Ignas Budvytis, Auteur ; et al., Auteur Année de publication : 2023 Article en page(s) : pp 101 - 120 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Traitement d'image optique
[Termes IGN] classification par réseau neuronal convolutif
[Termes IGN] distribution du coefficient de réflexion bidirectionnelle BRDF
[Termes IGN] éclairement lumineux
[Termes IGN] effet de profondeur cinétique
[Termes IGN] intensité lumineuse
[Termes IGN] itération
[Termes IGN] reconstruction 3D
[Termes IGN] réflectivité
[Termes IGN] stéréoscopie
[Termes IGN] vue perspectiveRésumé : (auteur) Reconstructing the 3D shape of an object using several images under different light sources is a very challenging task, especially when realistic assumptions such as light propagation and attenuation, perspective viewing geometry and specular light reflection are considered. Many of works tackling Photometric Stereo (PS) problems often relax most of the aforementioned assumptions. Especially they ignore specular reflection and global illumination effects. In this work, we propose a CNN-based approach capable of handling these realistic assumptions by leveraging recent improvements of deep neural networks for far-field Photometric Stereo and adapt them to the point light setup. We achieve this by employing an iterative procedure of point-light PS for shape estimation which has two main steps. Firstly we train a per-pixel CNN to predict surface normals from reflectance samples. Secondly, we compute the depth by integrating the normal field in order to iteratively estimate light directions and attenuation which is used to compensate the input images to compute reflectance samples for the next iteration. Our approach sigificantly outperforms the state-of-the-art on the DiLiGenT real world dataset. Furthermore, in order to measure the performance of our approach for near-field point-light source PS data, we introduce LUCES the first real-world ’dataset for near-fieLd point light soUrCe photomEtric Stereo’ of 14 objects of different materials were the effects of point light sources and perspective viewing are a lot more significant. Our approach also outperforms the competition on this dataset as well. Data and test code are available at the project page. Numéro de notice : A2023-048 Affiliation des auteurs : non IGN Thématique : IMAGERIE Nature : Article DOI : 10.1007/s11263-022-01689-3 Date de publication en ligne : 07/10/2022 En ligne : https://doi.org/10.1007/s11263-022-01689-3 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=102364
in International journal of computer vision > vol 131 n° 1 (January 2023) . - pp 101 - 120[article]