Détail de l'auteur
Auteur Guanghe Zhang |
Documents disponibles écrits par cet auteur (1)
Ajouter le résultat dans votre panier Affiner la recherche Interroger des sources externes
Multi-information PointNet++ fusion method for DEM construction from airborne LiDAR data / Hong Hu in Geocarto international, vol 38 n° 1 ([01/01/2023])
[article]
Titre : Multi-information PointNet++ fusion method for DEM construction from airborne LiDAR data Type de document : Article/Communication Auteurs : Hong Hu, Auteur ; Guanghe Zhang, Auteur ; Jianfeng Ao, Auteur ; et al., Auteur Année de publication : 2023 Article en page(s) : n° 2153929 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Applications photogrammétriques
[Termes IGN] apprentissage profond
[Termes IGN] données lidar
[Termes IGN] données localisées 3D
[Termes IGN] filtrage de points
[Termes IGN] image RVB
[Termes IGN] Kappa de Cohen
[Termes IGN] modèle numérique de surface
[Termes IGN] Perceptron multicouche
[Termes IGN] segmentation
[Termes IGN] semis de pointsRésumé : (auteur) Airborne light detection and ranging (LiDAR) is a popular technology in remote sensing that can significantly improve the efficiency of digital elevation model (DEM) construction. However, it is challenging to identify the real terrain features in complex areas using LiDAR data. To solve this problem, this work proposes a multi-information fusion method based on PointNet++ to improve the accuracy of DEM construction. The RGB data and normalized coordinate information of the point cloud was added to increase the number of channels on the input side of the PointNet++ neural network, which can improve the accuracy of the classification during feature extraction. Low and high density point clouds obtained from the International Society for Photogrammetry and Remote Sensing (ISPRS) and the United States Geological Survey (USGS) were used to test this proposed method. The results suggest that the proposed method improves the Kappa coefficient by 8.81% compared to PointNet++. The type I error was reduced by 2.13%, the type II error was reduced by 8.29%, and the total error was reduced by 2.52% compared to the conventional algorithm. Therefore, it is possible to conclude that the proposed method can obtain DEMs with higher accuracy. Numéro de notice : A2023-056 Affiliation des auteurs : non IGN Thématique : IMAGERIE Nature : Article DOI : 10.1080/10106049.2022.2153929 Date de publication en ligne : 23/12/2022 En ligne : https://doi.org/10.1080/10106049.2022.2153929 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=102389
in Geocarto international > vol 38 n° 1 [01/01/2023] . - n° 2153929[article]