Détail de l'auteur
Auteur Mingyue Xu |
Documents disponibles écrits par cet auteur (1)
Ajouter le résultat dans votre panier Affiner la recherche Interroger des sources externes
Multi-agent reinforcement learning to unify order-matching and vehicle-repositioning in ride-hailing services / Mingyue Xu in International journal of geographical information science IJGIS, vol 37 n° 2 (February 2023)
[article]
Titre : Multi-agent reinforcement learning to unify order-matching and vehicle-repositioning in ride-hailing services Type de document : Article/Communication Auteurs : Mingyue Xu, Auteur ; Peng Yue, Auteur ; Fan Yu, Auteur ; et al., Auteur Année de publication : 2023 Article en page(s) : pp 380 - 402 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Analyse spatiale
[Termes IGN] appariement de données localisées
[Termes IGN] apprentissage profond
[Termes IGN] autopartage
[Termes IGN] Chine
[Termes IGN] distribution spatiale
[Termes IGN] interaction humain-espace
[Termes IGN] modèle de Markov
[Termes IGN] système d'information urbain
[Termes IGN] système multi-agents
[Termes IGN] taxi
[Termes IGN] transmission de données
[Termes IGN] zone d'activité économiqueRésumé : (auteur) The popularity of ride-hailing platforms has significantly improved travel efficiency by providing convenient and personalized transportation services. Designing an effective ride-hailing service generally needs to address two tasks: order matching that assigns orders to available vehicles and proactive vehicle repositioning that deploys idle vehicles to potentially high-demand regions. Recent studies have intensively utilized deep reinforcement learning to solve the two tasks by learning an optimal dispatching strategy. However, most of them generate actions for the two tasks independently, neglecting the interactions between the two tasks and the communications among multiple drivers. To this end, this paper provides an approach based on multi-agent deep reinforcement learning where the two tasks are modeled as a unified Markov decision process, and the colossal state space and competition among drivers are addressed. Additionally, a modifiable agent-specific state representation is proposed to facilitate knowledge transferring and improve computing efficiency. We evaluate our approach on a public taxi order dataset collected in Chengdu, China, where a variable number of simulated vehicles are tested. Experimental results show that our approach outperforms seven existing baselines, reducing passenger rejection rate, driver idle time and improving total driver income. Numéro de notice : A2023-058 Affiliation des auteurs : non IGN Thématique : GEOMATIQUE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.1080/13658816.2022.2119477 Date de publication en ligne : 07/09/2022 En ligne : https://doi.org/10.1080/13658816.2022.2119477 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=102396
in International journal of geographical information science IJGIS > vol 37 n° 2 (February 2023) . - pp 380 - 402[article]