Détail de l'auteur
Auteur Yonggang Chen |
Documents disponibles écrits par cet auteur (1)
Ajouter le résultat dans votre panier Affiner la recherche Interroger des sources externes
A method for remote sensing image classification by combining Pixel Neighbourhood Similarity and optimal feature combination / Kaili Zhang in Geocarto international, vol 38 n° 1 ([01/01/2023])
[article]
Titre : A method for remote sensing image classification by combining Pixel Neighbourhood Similarity and optimal feature combination Type de document : Article/Communication Auteurs : Kaili Zhang, Auteur ; Yonggang Chen, Auteur ; Wentao Wang, Auteur ; et al., Auteur Année de publication : 2023 Article en page(s) : n° 2158948 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Traitement d'image optique
[Termes IGN] analyse spatiale
[Termes IGN] analyse spectrale
[Termes IGN] classification Spectral angle mapper
[Termes IGN] classification spectrale
[Termes IGN] corrélation automatique de points homologues
[Termes IGN] données vectorielles
[Termes IGN] extraction de traits caractéristiques
[Termes IGN] pixel
[Termes IGN] précision de la classification
[Termes IGN] signature texturale
[Termes IGN] similitude spectrale
[Termes IGN] voisinage (relation topologique)Résumé : (auteur) In the study of remote sensing image classification, feature extraction and selection is an effective method to distinguish different classification targets. Constructing a high-quality spectral-spatial feature and feature combination has been a worthwhile topic for improving classification accuracy. In this context, this study constructed a spectral-spatial feature, namely the Pixel Neighbourhood Similarity (PNS) index. Meanwhile, the PNS index and 19 spectral, textural and terrain features were involved in the Correlation-based Feature Selection (CFS) algorithm for feature selection to generate a feature combination (PNS-CFS). To explore how PNS and PNS-CFS improve the classification accuracy of land types. The results show that: (1) The PNS index exhibited clear boundaries between different land types. The performance quality of PNS was relatively highest compared to other spectral-spatial features, namely the Vector Similarity (VS) index, the Change Vector Intensity (CVI) index and the Correlation (COR) index. (2) The Overall Accuracy (OA) of the PNS-CFS was 94.66% and 93.59% in study areas 1 and 2, respectively. These were 7.48% and 6.02% higher than the original image data (ORI) and 7.27% and 2.39% higher than the single-dimensional feature combination (SIN-CFS). Compared to the feature combinations of VS, CVI, and COR indices (VS-CFS, CVI-COM, COR-COM), PNS-CFS had the relatively highest performance and classification accuracy. The study demonstrated that the PNS index and PNS-CFS have a high potential for image classification. Numéro de notice : A2023-059 Affiliation des auteurs : non IGN Thématique : IMAGERIE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.1080/10106049.2022.2158948 Date de publication en ligne : 03/01/2023 En ligne : https://doi.org/10.1080/10106049.2022.2158948 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=102397
in Geocarto international > vol 38 n° 1 [01/01/2023] . - n° 2158948[article]