Détail de l'auteur
Auteur Jianyu Yang |
Documents disponibles écrits par cet auteur (1)
Ajouter le résultat dans votre panier Affiner la recherche Interroger des sources externes
Solid waste mapping based on very high resolution remote sensing imagery and a novel deep learning approach / Bowen Niu in Geocarto international, vol 38 n° 1 ([01/01/2023])
[article]
Titre : Solid waste mapping based on very high resolution remote sensing imagery and a novel deep learning approach Type de document : Article/Communication Auteurs : Bowen Niu, Auteur ; Quanlong Feng, Auteur ; Jianyu Yang, Auteur ; et al., Auteur Année de publication : 2023 Article en page(s) : n° 2164361 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Applications de télédétection
[Termes IGN] cartographie thématique
[Termes IGN] Chine
[Termes IGN] classification par réseau neuronal convolutif
[Termes IGN] contour
[Termes IGN] déchet
[Termes IGN] fusion de données
[Termes IGN] image à très haute résolution
[Termes IGN] Inde
[Termes IGN] Mexique
[Termes IGN] urbanisationRésumé : (auteur) The urbanization worldwide leads to the rapid increase of solid waste, posing a threat to environment and people’s wellbeing. However, it is challenging to detect solid waste sites with high accuracy due to complex landscape, and very few studies considered solid waste mapping across multi-cities and in large areas. To tackle this issue, this study proposes a novel deep learning model for solid waste mapping from very high resolution remote sensing imagery. By integrating a multi-scale dilated convolutional neural network (CNN) and a Swin-Transformer, both local and global features are aggregated. Experiments in China, India and Mexico indicate that the proposed model achieves high performance with an average accuracy of 90.62%. The novelty lies in the fusion of CNN and Transformer for solid waste mapping in multi-cities without the need for pixel-wise labelled data. Future work would consider more sophisticated methods such as semantic segmentation for fine-grained solid waste classification. Numéro de notice : A2023-109 Affiliation des auteurs : non IGN Thématique : IMAGERIE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.1080/10106049.2022.2164361 Date de publication en ligne : 04/01/2023 En ligne : https://doi.org/10.1080/10106049.2022.2164361 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=102407
in Geocarto international > vol 38 n° 1 [01/01/2023] . - n° 2164361[article]