Détail de l'auteur
Auteur Khaled Bsaïes |
Documents disponibles écrits par cet auteur (1)
Ajouter le résultat dans votre panier Affiner la recherche Interroger des sources externes
Titre : Traitement possibiliste d'images, application au recalage d'images Type de document : Thèse/HDR Auteurs : Wissal Ben Markouza, Auteur ; Basel Solaiman, Directeur de thèse ; Khaled Bsaïes, Directeur de thèse Editeur : Institut Mines-Télécom Atlantique IMT Atlantique Année de publication : 2022 Importance : 151 p. Format : 21 x 30 cm Note générale : Bibliographie
Thèse de Doctorat de l'Ecole Nationale Supérieure Mines-Télécom Atlantique, Spécialité Signal, image, visionLangues : Français (fre) Descripteur : [Vedettes matières IGN] Traitement d'image optique
[Termes IGN] appariement d'images
[Termes IGN] classification dirigée
[Termes IGN] extraction de traits caractéristiques
[Termes IGN] information sémantique
[Termes IGN] niveau de gris (image)
[Termes IGN] optimisation (mathématiques)
[Termes IGN] recalage d'image
[Termes IGN] sous ensemble flou
[Termes IGN] théorie des possibilitésIndex. décimale : THESE Thèses et HDR Résumé : (auteur) Dans ce travail, nous proposons un système de recalage géométrique possibiliste qui fusionne les connaissances sémantiques et les connaissances au niveau du gris des images à recaler. Les méthodes de recalage géométrique existantes se reposent sur une analyse des connaissances au niveau des capteurs lors de la détection des primitives ainsi que lors de la mise en correspondance. L'évaluation des résultats de ces méthodes de recalage géométrique présente des limites au niveau de la perfection de la précision causées par le nombre important de faux amers. L’idée principale de notre approche proposée est de transformer les deux images à recaler en un ensemble de projections issues des images originales (source et cible). Cet ensemble est composé des images nommées « cartes de possibilité », dont chaque carte comporte un seul contenu et présente une distribution possibiliste d’une classe sémantique des deux images originales. Le système de recalage géométrique basé sur la théorie de possibilités proposé présente deux contextes : un contexte supervisé et un contexte non supervisé. Pour le premier cas de figure nous proposons une méthode de classification supervisée basée sur la théorie des possibilités utilisant les modèles d'apprentissage. Pour le contexte non supervisé, nous proposons une méthode de clustering possibiliste utilisant la méthode FCM-multicentroide. Les deux méthodes proposées fournissent en résultat les ensembles de classes sémantiques des deux images à recaler. Nous créons par la suite, les bases de connaissances pour le système de recalage possibiliste proposé. Nous avons amélioré la qualité du recalage géométrique existant en termes de perfection de précision, de diminution du nombre de faux amers et d'optimisation de la complexité temporelle. Note de contenu : Introduction générale
1- Etat de l'art
2- Recalage d'images : approche géométrique
3- estimation des distributions des possibilités pour le recalage géométrique
4- Systeme de recalage possibiliste
5- Expérimentation et évaluation du système de recalage possibiliste
Conclusions et perspectivesNuméro de notice : 24088 Affiliation des auteurs : non IGN Thématique : IMAGERIE Nature : Thèse française Note de thèse : Thèse de Doctorat : Signal, image, vision : Mines-Télécom Atlantique : 2022 Organisme de stage : Laboratoire de Traitement de l'Information Medicale DOI : sans En ligne : https://theses.hal.science/tel-03917545 Format de la ressource électronique : URL Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=102480