Détail de l'auteur
Auteur Karun Dayal |
Documents disponibles écrits par cet auteur (1)
Ajouter le résultat dans votre panier Affiner la recherche Interroger des sources externes
Developing the potential of airborne lidar systems for the sustainable management of forests / Karun Dayal (2022)
Titre : Developing the potential of airborne lidar systems for the sustainable management of forests : accounting for and managing the impacts of lidar scan angle on ABA model predictions of forest attributes Type de document : Thèse/HDR Auteurs : Karun Dayal, Auteur ; Sylvie Durrieu, Directeur de thèse ; Marc Bouvier, Directeur de thèse Editeur : Paris, Nancy, ... : AgroParisTech (2007 -) Année de publication : 2022 Note générale : Bibliographie
Thèse pour obtenir le grade de Docteur de l’Institut national des sciences et industries du vivant et de l'environnement - AgroParisTech, Spécialité GéomatiqueLangues : Anglais (eng) Descripteur : [Vedettes matières IGN] Acquisition d'image(s) et de donnée(s)
[Termes IGN] analyse comparative
[Termes IGN] angle de visée
[Termes IGN] données lidar
[Termes IGN] données localisées 3D
[Termes IGN] forêt alpestre
[Termes IGN] forêt ripicole
[Termes IGN] gestion durable
[Termes IGN] inventaire forestier national (données France)
[Termes IGN] jeu de données localisées
[Termes IGN] ligne de visée
[Termes IGN] modèle numérique de surface de la canopée
[Termes IGN] peuplement forestier
[Termes IGN] précision géométrique (imagerie)
[Termes IGN] prédiction
[Termes IGN] réseau neuronal artificiel
[Termes IGN] télémètre laser à balayage
[Termes IGN] télémètre laser aéroportéIndex. décimale : THESE Thèses et HDR Résumé : (Auteur) L’information mesurée par Lidar aéroporté dépend de la végétation observée et de la géométrie de l'acquisition lidar, elle-même fonction des paramètres d'acquisition et des propriétés du terrain. Cette thèse vise à comprendre la relation entre la géométrie d'acquisition du lidar et les prédictions d'attributs forestiers en se focalisant sur l'évaluation et la gestion des impacts de l'angle de balayage du lidar sur les métriques lidar et les modèles construits à l’échelle du peuplement (i.e. approches surfaciques ou ABA). Quatre types de forêts différents ont été étudiés, dont trois types de forêts (feuillus, conifères et mixtes) en terrain montagneux et un type de forêt (ripisylve) en terrain relativement plat . La thèse est divisée en trois parties. La première partie évalue l'effet de l'angle de balayage du lidar sur les mesures lidar couramment utilisées dans les prédictions de type ABA. On a ainsi montré que les différentes métriques lidar ne sont pas impactées de la même façon par des changements d'angle de balayage. La deuxième partie de l'étude s’intéresse aux conséquences sur la qualité des modèles de l’introduction dans ces modèles de métriques lidar présentant des sensibilités différentes à l'angle de balayage. Un modèle basé sur un jeu de métriques Lidar prédéfinies, plus ou moins sensibles aux angles de balayage, est utilisé.Les jeux de données lidar existants sont ré-échantillonnés selon les lignes de vol pour 1) simuler des acquisitions lidar avec différentes configurations de balayage, 2) construire des modèles pour une série de configurations de balayage différentes, et 3) comparer la qualité des estimations qui résultent de chaque configuration d’acquisition. Ces comparaisons montrent que l’introduction de métriques sensibles à l’angle de balayage diminue la robustesse des modèles. De plus, la variation de la précision des modèles ABA s’est révélée être plus élevée pour les jeux de données composés de nuages de points acquis depuis une seule ligne de vol que pour ceux composés de nuages de points obtenus en combinant les mesures de plusieurs lignes de vol.Nous avons aussi tenté de normaliser les métriques lidar en utilisant des méthodes de voxellisation pour limiter les impacts des changements d’angles de balayage. Les métriques issues des données voxellisées contribuent à augmenter la précision des prédictions ou à augmenter leur justesse, ou, dans certains cas, les deux en même temps. Dans la dernière partie de l'étude, les propriétés du terrain (topographie) et les paramètres d'acquisition sont explicitement pris en compte dans les modèles. Comme les interactions entre les paramètres d'acquisition lidar, le terrain et les propriétés de la végétation peuvent être complexes, un réseau de neurone (perceptron multicouche) est utilisé pour modéliser les relations entre les attributs forestiers et les métriques lidar en tenant compte de ces interactions entre métriques lidar et géométrie d'acquisition. Cela a permis d'améliorer significativement les prédictions ABA. Note de contenu : Chapter 1: Introduction
1.1 Sustainable Forest Management
1.2 The role of remote sensing in enhancing forest inventory
1.3 Enhanced forest inventory with lidar
1.4 Understanding the role of lidar scan angle in forestry applications
1.5 Research questions and objectives
1.6 Overview of the thesis
Chapter 2: Scan angle impact on lidar-derived metrics used in ABA models for prediction of forest
stand characteristics: a grid based analysis
2.1 Introduction
2.2 Materials
2.3 Methods
2.4 Results
2.5 Discussion
2.6 Conclusions
2.7 Acknowledgement
Chapter 3: An investigation into lidar scan angle impacts on stand attribute predictions in different
forest environments
3.1 Introduction
3.2 Materials and methods
3.3 Results
3.5 Conclusion
3.6 Acknowledgements
Chapter 4: Improving ABA models for forest attribute prediction using neural networks by considering effects of terrain and scan angles on 3D lidar point clouds
4.1 Introduction
4.2 Materials and methods
4.3 Results
4.4 Discussion
4.5 Conclusion
Chapter 5: Conclusion
5.1 Synthesis of the thesis
5.2 Limitations and PerspectivesNuméro de notice : 26957 Affiliation des auteurs : non IGN Thématique : FORET/IMAGERIE Nature : Thèse française Note de thèse : Thèse de Doctorat : Géomatique : Université Paris-Saclay : 2022 Organisme de stage : UMR TETIS - Territoires, Environnement, Télédétection et Information Spatiale nature-HAL : Thèse DOI : sans Date de publication en ligne : 24/01/2023 En ligne : https://hal.science/tel-03954492 Format de la ressource électronique : URL Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=102527