Détail de l'auteur
Auteur Saeid Janizadeh |
Documents disponibles écrits par cet auteur (1)
Ajouter le résultat dans votre panier Affiner la recherche Interroger des sources externes
Hybrid XGboost model with various Bayesian hyperparameter optimization algorithms for flood hazard susceptibility modeling / Saeid Janizadeh in Geocarto international, vol 37 n° 25 ([01/12/2022])
[article]
Titre : Hybrid XGboost model with various Bayesian hyperparameter optimization algorithms for flood hazard susceptibility modeling Type de document : Article/Communication Auteurs : Saeid Janizadeh, Auteur Année de publication : 2022 Article en page(s) : pp 8273 - 8292 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Analyse spatiale
[Termes IGN] apprentissage automatique
[Termes IGN] ArcGIS
[Termes IGN] bassin hydrographique
[Termes IGN] cartographie des risques
[Termes IGN] classification par arbre de décision
[Termes IGN] colinéarité
[Termes IGN] estimation bayesienne
[Termes IGN] Extreme Gradient Machine
[Termes IGN] inondation
[Termes IGN] modèle numérique de surface
[Termes IGN] modélisation spatiale
[Termes IGN] optimisation (mathématiques)
[Termes IGN] TéhéranRésumé : (auteur) The purpose of this investigation is to develop an optimal model to flood susceptibility mapping in the Kan watershed, Tehran, Iran. Therefore, in this study, three Bayesian optimization hyper-parameter algorithms including Upper confidence bound (UCB), Probability of improvement (PI) and Expected improvement (EI) in order to Extreme Gradient Boosting (XGB) machine learning model optimization and Extreme randomize tree (ERT) model for modeling flood hazard were used. In order to perform flood susceptibility mapping, 118 historic flood locations were identified and analyzed using 17 geo-environmental explanatory variables to predict flooding susceptibility. Flood locations data were divided into 70% for training and 30% for testing of models developed. The receiver operating characteristic (ROC) curve parameters were used to evaluate the performance of the models. The evaluation results based on the criterion area under curve (AUC) in the testing stage showed that the ERT and XGB models have efficiencies of 91.37% and 91.95%, respectively. The evaluation of the efficiency of Bayesian hyperparameters optimization methods on the XGB model also showed that these methods increase the efficiency of the XGB model, so that the model efficiency using these methods EI-XGB, POI-XGB and UCB-XGB based on the AUC in the testing stage were 95.89%, 96.87% and 96.38%, respectively. The results of the relative importance of the five models shows that the variables of elevation and distance from the river are the significant compared to other variables in predicting flood hazard in the Kan watershed. Numéro de notice : A2022-931 Affiliation des auteurs : non IGN Thématique : GEOMATIQUE Nature : Article DOI : 10.1080/10106049.2021.1996641 Date de publication en ligne : 29/10/2021 En ligne : https://doi.org/10.1080/10106049.2021.1996641 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=102666
in Geocarto international > vol 37 n° 25 [01/12/2022] . - pp 8273 - 8292[article]