Détail de l'auteur
Auteur Bruno Walter Pietzsch |
Documents disponibles écrits par cet auteur (1)
Ajouter le résultat dans votre panier Affiner la recherche Interroger des sources externes
Nonparametric upscaling of bark beetle infestations and management from plot to landscape level by combining individual-based with Markov chain models / Bruno Walter Pietzsch in European Journal of Forest Research, vol 142 n° 1 (February 2023)
[article]
Titre : Nonparametric upscaling of bark beetle infestations and management from plot to landscape level by combining individual-based with Markov chain models Type de document : Article/Communication Auteurs : Bruno Walter Pietzsch, Auteur ; Chris Wudel, Auteur ; Uta Berger, Auteur Année de publication : 2023 Article en page(s) : pp 129 - 144 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Termes IGN] Allemagne
[Termes IGN] chaîne de Markov
[Termes IGN] dépérissement
[Termes IGN] insecte nuisible
[Termes IGN] métamodèle
[Termes IGN] modèle de simulation
[Termes IGN] Picea abies
[Termes IGN] santé des forêts
[Termes IGN] Scolytinae
[Termes IGN] Suisse
[Vedettes matières IGN] Végétation et changement climatiqueRésumé : (auteur) Linked to climate change, drivers such as increased temperatures and decreased water availability affect forest health in complex ways by simultaneously weakening tree vitality and promoting insect pest activity. One major beneficiary of climate-induced changes is the European spruce bark beetle (Ips typographus). To improve the mechanistic understanding of climate change impacts on long-term beetle infestation risks, individual-based simulation models (IBM) such as the bark beetle dispersion model IPS-SPREADS have been proven as effective tools. However, the computational costs of IBMs limit their spatial scale of application. While these tools are best suitable to simulate bark beetle dynamics on the plot level, upscaling the process to larger areas is challenging. The larger spatial scale is, nevertheless, often required to support the selection of adequate management intervention. Here, we introduce a novel two-step approach to address this challenge: (1) we use the IPS-SPREADS model to simulate the bark beetle dispersal at a local scale by dividing the research area into 250 × 250 m grid cells; and (2) we then apply a metamodel framework to upscale the results to the landscape level. The metamodel is based on Markov chains derived from the infestation probabilities of IPS-SPREADS results and extended by considering neighbor interaction and spruce dieback of each focal cell. We validated the metamodel by comparing its predictions with infestations observed in 2017 and 2018 in the Saxon Switzerland national park, Germany, and tested sanitation felling as a measure to prevent potential further outbreaks in the region. Validation showed an improvement in predictions by introducing the model extension of beetle spreading from one cell to another. The metamodel forecasts indicated an increase in the risk of infestation for adjacent forest areas. In case of a beetle mass outbreak, sanitation felling intensities of 80 percent and above seem to mitigate further outbreak progression. Numéro de notice : A2023-139 Affiliation des auteurs : non IGN Thématique : FORET Nature : Article DOI : 10.1007/s10342-022-01512-1 Date de publication en ligne : 29/10/2022 En ligne : https://doi.org/10.1007/s10342-022-01512-1 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=102694
in European Journal of Forest Research > vol 142 n° 1 (February 2023) . - pp 129 - 144[article]