Détail de l'auteur
Auteur Yu-Bo Luo |
Documents disponibles écrits par cet auteur (1)
Ajouter le résultat dans votre panier Affiner la recherche Interroger des sources externes
A spatiotemporal data model and an index structure for computational time geography / Bi Yu Chen in International journal of geographical information science IJGIS, vol 37 n° 3 (March 2023)
[article]
Titre : A spatiotemporal data model and an index structure for computational time geography Type de document : Article/Communication Auteurs : Bi Yu Chen, Auteur ; Yu-Bo Luo, Auteur ; Tao Jia, Auteur ; et al., Auteur Année de publication : 2023 Article en page(s) : pp 550 - 583 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Géomatique
[Termes IGN] approche hiérarchique
[Termes IGN] données massives
[Termes IGN] données spatiotemporelles
[Termes IGN] modèle conceptuel de données spatio-temporelles
[Termes IGN] requête spatiotemporelle
[Termes IGN] stockage de données
[Termes IGN] Time-geographyRésumé : (auteur) The availability of Spatiotemporal Big Data has provided a golden opportunity for time geographical studies that have long been constrained by the lack of individual-level data. However, how to store, manage, and query a huge number of time geographic entities effectively and efficiently with complex spatiotemporal characteristics and relationships poses a significant challenge to contemporary GIS platforms. In this article, a hierarchical compressed linear reference (CLR) model is proposed to transform network-constrained time geographic entities from three-dimensional (3D) (x, y, t) space into two-dimensional (2D) space. Accordingly, time geographic entities can be represented as 2D spatial entities and stored in a classical spatial database. The proposed CLR model supports a hierarchical linear reference system (LRS) including not only underlying a link-based LRS but also multiple higher-level route-based LRSs. In addition, an LRS-based spatiotemporal index structure is developed to index both time geographic entities and the corresponding hierarchical network. The results of computational experiments on large datasets of space–time paths and prisms show that the proposed hierarchical CLR model is effective at storing and managing time geographic entities in road networks. The developed index structure achieves satisfactory query performance in milliseconds on large datasets of time geographic entities. Numéro de notice : A2023-153 Affiliation des auteurs : non IGN Thématique : GEOMATIQUE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.1080/13658816.2022.2128192 Date de publication en ligne : 03/10/2023 En ligne : https://doi.org/10.1080/13658816.2022.2128192 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=102836
in International journal of geographical information science IJGIS > vol 37 n° 3 (March 2023) . - pp 550 - 583[article]