Détail de l'auteur
Auteur Xinrong Lyu |
Documents disponibles écrits par cet auteur (1)
Ajouter le résultat dans votre panier Affiner la recherche Interroger des sources externes
Cross-supervised learning for cloud detection / Kang Wu in GIScience and remote sensing, vol 60 n° 1 (2023)
[article]
Titre : Cross-supervised learning for cloud detection Type de document : Article/Communication Auteurs : Kang Wu, Auteur ; Zunxiao Xu, Auteur ; Xinrong Lyu, Auteur ; et al., Auteur Année de publication : 2023 Article en page(s) : n° 2147298 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Traitement d'image optique
[Termes IGN] apprentissage dirigé
[Termes IGN] apprentissage profond
[Termes IGN] attention (apprentissage automatique)
[Termes IGN] détection d'objet
[Termes IGN] données étiquetées d'entrainement
[Termes IGN] nuageRésumé : (auteur) We present a new learning paradigm, that is, cross-supervised learning, and explore its use for cloud detection. The cross-supervised learning paradigm is characterized by both supervised training and mutually supervised training, and is performed by two base networks. In addition to the individual supervised training for labeled data, the two base networks perform the mutually supervised training using prediction results provided by each other for unlabeled data. Specifically, we develop In-extensive Nets for implementing the base networks. The In-extensive Nets consist of two Intensive Nets and are trained using the cross-supervised learning paradigm. The Intensive Net leverages information from the labeled cloudy images using a focal attention guidance module (FAGM) and a regression block. The cross-supervised learning paradigm empowers the In-extensive Nets to learn from both labeled and unlabeled cloudy images, substantially reducing the number of labeled cloudy images (that tend to cost expensive manual effort) required for training. Experimental results verify that In-extensive Nets perform well and have an obvious advantage in the situations where there are only a few labeled cloudy images available for training. The implementation code for the proposed paradigm is available at https://gitee.com/kang_wu/in-extensive-nets. Numéro de notice : A2023-190 Affiliation des auteurs : non IGN Thématique : IMAGERIE Nature : Article DOI : 10.1080/15481603.2022.2147298 Date de publication en ligne : 03/01/2023 En ligne : https://doi.org/10.1080/15481603.2022.2147298 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=102969
in GIScience and remote sensing > vol 60 n° 1 (2023) . - n° 2147298[article]