Détail de l'auteur
Auteur Piotr Janiec |
Documents disponibles écrits par cet auteur (1)
Ajouter le résultat dans votre panier Affiner la recherche Interroger des sources externes
A machine learning method for Arctic lakes detection in the permafrost areas of Siberia / Piotr Janiec in European journal of remote sensing, vol 56 n° 1 (2023)
[article]
Titre : A machine learning method for Arctic lakes detection in the permafrost areas of Siberia Type de document : Article/Communication Auteurs : Piotr Janiec, Auteur ; Jakub Nowosad, Auteur ; Sbigniew Zwoliński, Auteur Année de publication : 2023 Article en page(s) : n° 2163923 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Traitement d'image optique
[Termes IGN] apprentissage automatique
[Termes IGN] Arctique
[Termes IGN] classification et arbre de régression
[Termes IGN] classification par forêts d'arbres décisionnels
[Termes IGN] image Landsat-8
[Termes IGN] lac glaciaire
[Termes IGN] MERIT
[Termes IGN] modèle numérique de surface
[Termes IGN] pergélisol
[Termes IGN] Short Waves InfraRed
[Termes IGN] SibérieRésumé : (auteur) Thermokarst lakes are the main components of the vast Arctic and subarctic landscapes. These lakes can serve as geoindicators of permafrost degradation; therefore, proper lake distribution assessment methods are necessary. In this study, we compared four machine learning methods to improve existing lake detection systems. The northern part of Yakutia was selected as the study area owing to its complex environment. We used data from Landsat 8 and spectral indices to take into account the spectral characteristics of the lakes, and MERIT DEM data to take into account the topography. The lowest accuracy was found for the classification and regression trees (CART) method (overall accuracy = 81%). On the other hand, the random forests (RF) classification provided the best results (overall accuracy = 92%), and only this classification coped well in all problematic areas, such as shaded and humid areas, near steep slopes, burn scars, and rivers. The altitude and bands SWIR1 (Short wave infrared 1), SWIR2 (Short wave infrared 2), and Green were the most important. Spectral indices did not have significant impact on the classification results in the specific conditions of the thermokarst lakes environment. 17,700 lakes were identified with the total area of 271.43 km2. Numéro de notice : A2023-218 Affiliation des auteurs : non IGN Thématique : IMAGERIE Nature : Article DOI : 10.1080/22797254.2022.2163923 Date de publication en ligne : 19/01/2023 En ligne : https://doi.org/10.1080/22797254.2022.2163923 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=103156
in European journal of remote sensing > vol 56 n° 1 (2023) . - n° 2163923[article]