Détail de l'auteur
Auteur Cheng Fu |
Documents disponibles écrits par cet auteur (1)
Ajouter le résultat dans votre panier Affiner la recherche Interroger des sources externes
A conceptual framework for developing dashboards for big mobility data / Lindsey Conrow in Cartography and Geographic Information Science, Vol 50 n° 5 (June 2023)
[article]
Titre : A conceptual framework for developing dashboards for big mobility data Type de document : Article/Communication Auteurs : Lindsey Conrow, Auteur ; Cheng Fu, Auteur ; et al., Auteur Année de publication : 2023 Article en page(s) : pp 495 - 514 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Termes IGN] cadre conceptuel
[Termes IGN] données massives
[Termes IGN] mobilité humaine
[Termes IGN] tableau de bordRésumé : (auteur) Dashboards are an increasingly popular form of data visualization. Large, complex, and dynamic mobility data present a number of challenges in dashboard design. The overall aim for dashboard design is to improve information communication and decision making, though big mobility data in particular require considering privacy alongside size and complexity. Taking these issues into account, a gap remains between wrangling mobility data and developing meaningful dashboard output. Therefore, there is a need for a framework that bridges this gap to support the mobility dashboard development and design process. In this paper we outline a conceptual framework for mobility data dashboards that provides guidance for the development process while considering mobility data structure, volume, complexity, varied application contexts, and privacy constraints. We illustrate the proposed framework’s components and process using example mobility dashboards with varied inputs, end-users and objectives. Overall, the framework offers a basis for developers to understand how informational displays of big mobility data are determined by end-user needs as well as the types of data selection, transformation, and display available to particular mobility datasets. Numéro de notice : A2023-236 Affiliation des auteurs : non IGN Thématique : GEOMATIQUE Nature : Article DOI : 10.1080/15230406.2023.2190164 Date de publication en ligne : 11/04/2023 En ligne : https://doi.org/10.1080/15230406.2023.2190164 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=103595
in Cartography and Geographic Information Science > Vol 50 n° 5 (June 2023) . - pp 495 - 514[article]