Détail de l'autorité
SESAME / Fablet, Ronan
Nom :
SESAME
titre complet :
geStion et Exploitation des flux de Données SAtellitaires AIS & Sentinel pour la surveillance du tra
Auteurs :
Fablet, Ronan
|
Documents disponibles (1)
Ajouter le résultat dans votre panier Affiner la recherche Interroger des sources externes
Ship identification and characterization in Sentinel-1 SAR images with multi-task deep learning / Clément Dechesne in Remote sensing, Vol 11 n° 24 (December-2 2019)
[article]
Titre : Ship identification and characterization in Sentinel-1 SAR images with multi-task deep learning Type de document : Article/Communication Auteurs : Clément Dechesne , Auteur ; Sébastien Lefèvre, Auteur ; Rodolphe Vadaine, Auteur ; Guillaume Hajduch, Auteur ; Ronan Fablet, Auteur Année de publication : 2019 Projets : SESAME / Fablet, Ronan Article en page(s) : n° 2997 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Traitement d'image radar et applications
[Termes IGN] apprentissage profond
[Termes IGN] classification par réseau neuronal convolutif
[Termes IGN] détection d'objet
[Termes IGN] détection de cible
[Termes IGN] image Sentinel-SAR
[Termes IGN] navire
[Termes IGN] objet mobileRésumé : (auteur) The monitoring and surveillance of maritime activities are critical issues in both military and civilian fields, including among others fisheries’ monitoring, maritime traffic surveillance, coastal and at-sea safety operations, and tactical situations. In operational contexts, ship detection and identification is traditionally performed by a human observer who identifies all kinds of ships from a visual analysis of remotely sensed images. Such a task is very time consuming and cannot be conducted at a very large scale, while Sentinel-1 SAR data now provide a regular and worldwide coverage. Meanwhile, with the emergence of GPUs, deep learning methods are now established as state-of-the-art solutions for computer vision, replacing human intervention in many contexts. They have been shown to be adapted for ship detection, most often with very high resolution SAR or optical imagery. In this paper, we go one step further and investigate a deep neural network for the joint classification and characterization of ships from SAR Sentinel-1 data. We benefit from the synergies between AIS (Automatic Identification System) and Sentinel-1 data to build significant training datasets. We design a multi-task neural network architecture composed of one joint convolutional network connected to three task specific networks, namely for ship detection, classification, and length estimation. The experimental assessment shows that our network provides promising results, with accurate classification and length performance (classification overall accuracy: 97.25%, mean length error: 4.65 m ± 8.55 m). Numéro de notice : A2019-632 Affiliation des auteurs : LASTIG MATIS+Ext (2012-2019) Thématique : IMAGERIE/INFORMATIQUE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.3390/rs11242997 Date de publication en ligne : 13/12/2019 En ligne : https://doi.org/10.3390/rs11242997 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=95325
in Remote sensing > Vol 11 n° 24 (December-2 2019) . - n° 2997[article]