Détail de l'auteur
Auteur Jan Skaloud |
Documents disponibles écrits par cet auteur (27)
Ajouter le résultat dans votre panier
Visionner les documents numériques
Affiner la recherche Interroger des sources externes
Lidar point-to-point correspondences for rigorous registration of kinematic scanning in dynamic networks / Aurélien Brun in ISPRS Journal of photogrammetry and remote sensing, vol 189 (July 2022)
[article]
Titre : Lidar point-to-point correspondences for rigorous registration of kinematic scanning in dynamic networks Type de document : Article/Communication Auteurs : Aurélien Brun, Auteur ; Davide Antonio Cucci, Auteur ; Jan Skaloud, Auteur Année de publication : 2022 Article en page(s) : pp 185 - 200 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Lasergrammétrie
[Termes IGN] appariement de points
[Termes IGN] centrale inertielle
[Termes IGN] données lidar
[Termes IGN] filtre de Kalman
[Termes IGN] géoréférencement
[Termes IGN] précision du positionnement
[Termes IGN] Ransac (algorithme)
[Termes IGN] semis de points
[Termes IGN] signal GNSS
[Termes IGN] superpositionRésumé : (auteur) With the objective of improving the registration of lidar point clouds produced by kinematic scanning systems, we propose a novel trajectory adjustment procedure that leverages on the automated extraction of selected reliable 3D point–to–point correspondences between overlapping point clouds and their joint integration (adjustment) together with raw inertial and GNSS observations. This is performed in a tightly coupled fashion using a dynamic network approach that results in an optimally compensated trajectory through modeling of errors at the sensor, rather than the trajectory, level. The 3D correspondences are formulated as static conditions within the dynamic network and the registered point cloud is generated with significantly higher accuracy based on the corrected trajectory and possibly other parameters determined within the adjustment. We first describe the method for selecting correspondences and how they are inserted into the dynamic network via new observation model while providing an open-source implementation of the solver employed in this work. We then describe the experiments conducted to evaluate the performance of the proposed framework in practical airborne laser scanning scenarios with low-cost MEMS inertial sensors. In the conducted experiments, the method proposed to establish 3D correspondences is effective in determining point–to–point matches across a wide range of geometries such as trees, buildings and cars. Our results demonstrate that the method improves the point cloud registration accuracy (5 in nominal and 10 in emulated GNSS outage conditions within the studied cases), which is otherwise strongly affected by errors in the determined platform attitude or position, and possibly determine unknown boresight angles. The proposed methods remain effective even if only a fraction (0.1%) of the total number of established 3D correspondences are considered in the adjustment. Numéro de notice : A2022-413 Affiliation des auteurs : non IGN Thématique : IMAGERIE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.1016/j.isprsjprs.2022.04.027 Date de publication en ligne : 19/05/2022 En ligne : https://doi.org/10.1016/j.isprsjprs.2022.04.027 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=100764
in ISPRS Journal of photogrammetry and remote sensing > vol 189 (July 2022) . - pp 185 - 200[article]Exemplaires(1)
Code-barres Cote Support Localisation Section Disponibilité 081-2022071 SL Revue Centre de documentation Revues en salle Disponible GNSS/INS Kalman filter integrity monitoring with uncertain time correlated error processes / Omar Garcia Crespillo (2022)
Titre : GNSS/INS Kalman filter integrity monitoring with uncertain time correlated error processes Type de document : Thèse/HDR Auteurs : Omar Garcia Crespillo, Auteur ; Jan Skaloud, Directeur de thèse ; Michael Meurer, Directeur de thèse Editeur : Lausanne : Ecole Polytechnique Fédérale de Lausanne EPFL Année de publication : 2022 Importance : 180 p. Format : 21 x 30 cm Note générale : bibliographie
Thèse présentée pour l'obtention du grade de Docteur ès SciencesLangues : Anglais (eng) Descripteur : [Vedettes matières IGN] Navigation et positionnement
[Termes IGN] corrélation temporelle
[Termes IGN] couplage GNSS-INS
[Termes IGN] filtre de Kalman
[Termes IGN] fréquence multiple
[Termes IGN] modèle d'erreur
[Termes IGN] modèle de Gauss-Markov
[Termes IGN] navigation inertielle
[Termes IGN] norme
[Termes IGN] positionnement par GNSS
[Termes IGN] Receiver Autonomous Integrity Monitoring
[Termes IGN] système d'extensionRésumé : (auteur) Safety-critical navigation applications require that estimation errors be reliably quantified and bounded. Over the last decade, significant effort has been put to guarantee a bounded position estimation by using Global Navigation Satellite Systems (GNSS) by means of satellite-based or ground-based augmentation systems (SBAS, GBAS) and Advanced Receiver Autonomous Integrity Monitoring (ARAIM) for aviation. This has been achieved by carefully designing models that overbound the different residual error components in range measurements (e.g., satellite clock and orbit, tropospheric and multipath among others). On the other hand, and as part of Aircraft based Augmentation Systems (ABAS), the use of Inertial Reference Systems (IRS) has been traditionally included as additional source of redundant navigation information. More recently, the use of Inertial Navigation Systems (INS) with a wider spectrum of possible inertial sensor qualities in tighter integration with single-frequency GNSS has seen its way in a new Minimum Operational Performance Standard (MOPS). New GNSS/INS systems and standards could still benefit from the methodologies and aspects developed for future dual-frequency/multiconstellation GNSS standards. However, safety-related GNSS systems like ARAIM are snapshot-based, that is, the position estimation is performed independently at every epoch, whereas GNSS/INS systems are typically based on Kalman filtering (KF).
Therefore, the existing error overbounding models and methodologies are not enough to produce a robust KF position estimation since the impact of time-correlation in measurements must also be accounted for. Moreover, it has been observed that the time-correlation of different GNSS errors presents also some level of uncertain behavior, which makes very challenging for linear dynamic systems to produce a guaranteed solution. As proposed by GNSS Minimum Operational Performance Standards (MOPS), there are sources of time-correlated errors that can be well modelled using a first order Gauss-Markov process (GMP). Using this GMP parametric model, it is possible to capture the uncertain timecorrelated nature of error processes by allowing the variance and time correlation constant of the GMP model to be in a bounded range. Under this situation, the first part of this thesis studies the propagation of the uncertain models through the Kalman filter estimation and provides new theoretical tools in time and frequency domain to bound the KF error estimation covariance. As a result, tight stationary bounding models on the GMP uncertain processes are derived in both continuous and discrete time domain. This is extended to non-stationary models that provide tighter error bounding during an initial transient phase when measurements are first introduced (which will be relevant in scenarios with changing number of visible satellites). The new models can very easily be used during the KF implementation which might be very attractive by regulators and designers. In the second part of the thesis, the new overbounding GMP models are applied for a dual-frequency GPS-Galileo tightly-coupled GNSS/INS integration. The design of the filter and of error models is performed following compatibility with current aviation standards and ARAIM Working Group C results. The impact of the use of the new models is analysed in terms of conservativeness, integrity and continuity based on realistic operational simulations linked to airport runways. The benefit of an overbounded GNSS/INS solution is also compared with the current baseline ARAIM algorithm solution. This thesis supports the evolution of safe GNSS-based positioning systems from only snapshot based to filtered solutions. Ensuring integrity for Kalman filter in general and for GNSS/INS systems in particular is a game changer to achieve higher performance levels for future dualfrequency multi-constellation aviation services and is of vital importance for new ground and air applications like autonomous vehicles or urban air mobility.Note de contenu : Introduction
1- Preliminaries
2- Bounding Kalman Filter with uncertain error processes
3- Application to GNSS/INS integraty monitoring
4- Closing
5- AppendixNuméro de notice : 28688 Affiliation des auteurs : non IGN Thématique : POSITIONNEMENT Nature : Thèse étrangère Note de thèse : Thèse de Doctorat : Sciences : Lausanne : 2022 DOI : sans En ligne : https://infoscience.epfl.ch/record/292087?ln=fr Format de la ressource électronique : URL Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=100103 Mapping quality prediction for RTK/PPK-equipped micro-drones operating in complex natural environment / Emmanuel Clédat in ISPRS Journal of photogrammetry and remote sensing, vol 167 (September 2020)
[article]
Titre : Mapping quality prediction for RTK/PPK-equipped micro-drones operating in complex natural environment Type de document : Article/Communication Auteurs : Emmanuel Clédat , Auteur ; Laurent Valentin Jospin, Auteur ; Davide Antonio Cucci, Auteur ; Jan Skaloud, Auteur Année de publication : 2020 Article en page(s) : pp 24 - 38 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Photogrammétrie numérique
[Termes IGN] aérotriangulation
[Termes IGN] compensation par faisceaux
[Termes IGN] image captée par drone
[Termes IGN] modèle numérique de terrain
[Termes IGN] plan de vol
[Termes IGN] point d'appui
[Termes IGN] positionnement cinématique en temps réel
[Termes IGN] qualité cartographique
[Termes IGN] temps de vol
[Termes IGN] test statistique
[Termes IGN] texture du solRésumé : (auteur) Drone mapping with GNSS-assisted photogrammetry is a highly efficient method for surveying small- or medium-sized areas. However, the mapping quality is not intuitively predictable, particularly in complex environments (with steep and cluttered terrain), in which the quality of the real-time kinematic (RTK) or post-processed kinematic (PPK) positioning varies. We present a method to predict the mapping quality from the information that is available prior to the flight, such as the flight plan, expected flight time, approximate digital terrain model, prevailing surface texture, and embedded sensor characteristics. After detailing the important considerations, we also present the concept of global precision within the context of minimal and efficient ground control point placement in a complex terrain. Finally, we validate the proposed methodology by means of rigorous statistical testing against numerous experiments conducted under different mapping conditions. Numéro de notice : A2020-545 Affiliation des auteurs : non IGN Thématique : IMAGERIE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.1016/j.isprsjprs.2020.05.015 Date de publication en ligne : 12/07/2020 En ligne : https://doi.org/10.1016/j.isprsjprs.2020.05.015 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=95771
in ISPRS Journal of photogrammetry and remote sensing > vol 167 (September 2020) . - pp 24 - 38[article]Exemplaires(3)
Code-barres Cote Support Localisation Section Disponibilité 081-2020091 RAB Revue Centre de documentation En réserve L003 Disponible 081-2020093 DEP-RECP Revue LASTIG Dépôt en unité Exclu du prêt 081-2020092 DEP-RECF Revue Nancy Dépôt en unité Exclu du prêt On the adjustment, calibration and orientation of drone photogrammetry and laser-scanning / Emmanuel Clédat (2020)
Titre : On the adjustment, calibration and orientation of drone photogrammetry and laser-scanning Type de document : Thèse/HDR Auteurs : Emmanuel Clédat , Auteur ; Jan Skaloud, Directeur de thèse ; Davide Antonio Cucci, Directeur de thèse Editeur : Lausanne : Ecole Polytechnique Fédérale de Lausanne EPFL Année de publication : 2020 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Photogrammétrie numérique
[Termes IGN] centrale inertielle
[Termes IGN] compensation par bloc
[Termes IGN] données lidar
[Termes IGN] données localisées 3D
[Termes IGN] étalonnage de chambre métrique
[Termes IGN] fusion de données
[Termes IGN] GPS-INS
[Termes IGN] image captée par drone
[Termes IGN] optimisation (mathématiques)
[Termes IGN] point d'appui
[Termes IGN] vision par ordinateurRésumé : (auteur) Centimetre level precision mapping is essential for many applications such as land-use, infrastructure inspection, cultural heritage preservation, and construction site monitoring. However, the acquisition and its preparation (in particular the setting of a ground control point network (GCPs)) are still expensive or even impossible in cluttered or dangerous areas. The recent development of UAVs together with the miniaturization of the sensors is a promising evolution for reducing costs and expand opportunities. The sensors embedded on the drone: GNSS antenna, IMU, camera and (optional) LIDAR are light and often low-cost. The low quality of their raw measurements must be counterbalanced by their rigorous modeling in order to obtain accurate final results: if we cannot expect the sensors to be error-free, one must model these in order to correct them. This is achieved by in-situ calibration or on a dedicated calibration field, together with a rigorous fusion of the raw data acquired by the different sensors with the so-called bundle-adjustment method. This thesis proposes several models to describe the behavior of the sensors, in order to hybridize them rigorously in the bundle-adjustment. Consistent datasets have been acquired on the field specifically to assess the relevance of both the sensor models and their hybridizing in complex photogrammetric processing. The contribution of this thesis could be divided into two mains categories. On one hand, this thesis suggests tools and recommendation to improve directly the procedures achieved by end-users using current UAV-mapping commercial solutions (in particular for the GCPs placement, for the choice of the camera calibration and model and for the flight-plan). On the other hand, this thesis put forward exotic methods (methods considered as exotic at the time of the writing of the thesis) such as Photo-LIDAR hybridizing and collaborative mapping achieved by a terrestrial-aerial tandem (a terrestrial vehicle holding a LIDAR, GNSS, imaging and inertial sensors followed by a drone conceived to proceed to airborne photogrammetry) or an aerial-aerial tandem (two drones flying in formation to proceed to airborne photogrammetry). The contribution of this thesis will permit to reduce costs, to improve the quality of mapping products and to enlarge the possibilities of mapping: in particular, map cluttered or inaccessible zones which are nowadays considered as difficult or even impossible to map. Numéro de notice : 17737 Affiliation des auteurs : non IGN Thématique : IMAGERIE Nature : Thèse étrangère Organisme de stage : Laboratoire de topométrie (EPFL) DOI : 10.5075/epfl-thesis-7826 En ligne : https://doi.org/10.5075/epfl-thesis-7826 Format de la ressource électronique : URL Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=100752
Titre : Vehicle dynamic model based navigation for small UAVs Type de document : Thèse/HDR Auteurs : Mehran Khaghani, Auteur ; Jan Skaloud, Directeur de thèse Editeur : Zurich : Schweizerischen Geodatischen Kommission / Commission Géodésique Suisse Année de publication : 2018 Autre Editeur : Lausanne : Ecole Polytechnique Fédérale de Lausanne EPFL Collection : Geodätisch-Geophysikalische Arbeiten in der Schweiz, ISSN 0257-1722 num. 101 Importance : 138 p. Format : 21 x 30 cm ISBN/ISSN/EAN : 978-3-908440-47-5 Note générale : bibliography
Thèse de Doctorat, EPFL, Lausanne, 2018Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Navigation et positionnement
[Termes IGN] analyse de sensibilité
[Termes IGN] centrale inertielle
[Termes IGN] démonstration de faisabilité
[Termes IGN] drone
[Termes IGN] filtre de Kalman
[Termes IGN] GPS-INS
[Termes IGN] méthode de Monte-Carlo
[Termes IGN] modèle de simulation
[Termes IGN] modèle dynamique
[Termes IGN] navigation autonome
[Termes IGN] positionnement par GNSS
[Termes IGN] processus stochastique
[Termes IGN] ventIndex. décimale : 30.70 Navigation et positionnement Résumé : (auteur) The dominant navigation system for small civilian UAVs today is based on integration of inertial navigation system (INS) and global navigation satellite system (GNSS). This strategy works well to navigate the UAV, as long as proper reception of GNSS signal is maintained. However, when GNSS outage occurs, the INS-based navigation solution drifts very quickly, considering the limited quality of IMU(s) employed in INS for small UAVs. In beyond visual line of sight (BVLOS) flights, this poses the serious danger of losing the UAV and its eventual falling down. Limited payload capacity and cost for small UAVs, as well as the need for operating in different conditions, with limited visibility for example, make it challenging to find a solution to reach higher levels of navigation autonomy based on conventional approaches. This thesis aims to improve the accuracy of autonomous navigation for small UAVs by at least one order of magnitude. The proposed novel approach employs vehicle dynamic model (VDM) as process model within navigation system, and treats data from other sensors such as IMU, barometric altimeter, and GNSS receiver, whenever available, as observations within the system. Such improvement comes with extra effort required to determine the VDM parameters for any specific UAV. This work investigates the internal capability of the proposed system for estimating VDM parameters as part of the augmented state vector within an extended Kalman filter (EKF) as the estimator. This reduces the efforts required to setup such navigation system that is platform dependent. Multiple experimental flights using two custom made fixed-wing UAVs are presented together with Monte-Carlo simulations. The results reveal improvements of 1 to 2 orders of magnitude in navigation accuracy during GNSS outages of a few minutes' duration. Computational cost for the proposed VDM-based navigation does not exceed 3~times that of conventional INS-based systems, which establishes its applicability for online application. A global sensitivity analysis is presented, spotting the VDM parameters with higher influence on navigation performance. This provides insight for design of calibration procedures. The proposed VDM-based navigation system can be interesting for professional UAVs from at least two points of view. Firstly, it adds little to no extra hardware and cost to the UAV. Secondly and more importantly, it might be currently the only way to reach such significant improvement in navigation autonomy for small UAVs regardless of visibility conditions and electromagnetic signals reception. Possibly, such environmental condition independence for navigation system may be needed to obtain certifications from legal authorities to expand UAV applications to new types of mission. Note de contenu : 1- Preliminaries
2- VDM-based navigation framework
3- Results and analyses
4- Conclusion remarksNuméro de notice : 21988 Affiliation des auteurs : non IGN Thématique : POSITIONNEMENT Nature : Thèse étrangère Note de thèse : Thèse Doctorat : : EPFL : 2018 nature-HAL : Thèse DOI : 10.5075/epfl-thesis-8494 En ligne : https://www.sgc.ethz.ch/publications.html Format de la ressource électronique : URL Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=91986 Exemplaires(1)
Code-barres Cote Support Localisation Section Disponibilité 21988-01 30.70 Livre Centre de documentation Géodésie Disponible vol IV-1/W1 - May 2017 - ISPRS Hannover Workshop: HRIGI 17 – CMRT 17 – ISA 17 – EuroCOW 17, 6–9 June 2017, Hannover, Germany (Bulletin de ISPRS Annals of the Photogrammetry, Remote Sensing and Spatial Information Sciences) / Christian HeipkePermalinkPermalinkvol III-3 - July 2016 - [actes] XXIII ISPRS Congress, Commission III, 12–19 July 2016, Prague, Czech Republic (Bulletin de ISPRS Annals of the Photogrammetry, Remote Sensing and Spatial Information Sciences) / Lena HalounovaPermalinkPermalinkPermalinkPlanificateur de missions photogrammétriques pour drones ultra-légers (Micro Aerial Vehicle MAV) / F. Gandor in Géomatique suisse, vol 113 n° 9 (septembre 2015)PermalinkPermalinkOptimiser la performance de calcul pour la cartographie en temps réel avec un laser scanner aéroporté / Jan Skaloud in Géomatique suisse, vol 109 n° 6 (juin 2011)PermalinkReal-time registration of airborne laser with sub-decimeter accuracy / Jan Skaloud in ISPRS Journal of photogrammetry and remote sensing, vol 65 n° 2 (March - April 2010)PermalinkIn-flight quality assessment and data processing for airborne laser scanning / Philipp Schaer (2010)Permalink